IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v199y2024ics1364032124002430.html
   My bibliography  Save this article

Versatile metal-free carbon materials from ZIF-8: Insights into construction strategies, properties, applications and structure-activity relationships

Author

Listed:
  • Chen, Ao
  • Cheng, Min
  • Huang, Danlian
  • Zhang, Gaoxia
  • Wang, Wenjun
  • Du, Li
  • Wang, Guangfu
  • Liu, Hongda
  • Chen, Yongxi
  • Xiao, Wenjun
  • Shi, Qingkai

Abstract

Exploring efficient functional materials for environmental remediation and energy storage and conversion is in the spotlight due to the overuse of traditional fossil fuels and the severe pollution of the environment. Metal-free carbon materials (MFCMs) with abundant sources, high electrical conductivity, surface functionalities and environmental compatibility represent promising candidates for environmental remediation, energy storage and conversion. Compared with conventional MFCMs, metal-organic framework (MOF)-derived MFCMs inherit the properties and advantages (tunable module, intrinsic diversity and interesting activities) of their parent materials, becoming the optimal multifunctional materials in recent years. Especially, zeolitic imidazolate framework-8 (ZIF-8)-derived MFCMs with richer pore structures and stronger electron transfer capabilities have gained much attention. Previously, the synthesis and applications of ZIF-8-derived MFCMs were only slightly covered in some MOF-related reviews, and there is still a lack of targeted summaries and discussions for them. To this end, the present work starts with an introduction of strategies for designing ZIF-8-derived MFCMs from the perspective of different precursors followed by a discussion of significant advantages obtained from ZIF-8-derived MFCMs. Subsequently, based on density-functional theory (DFT), the structures and related reaction mechanisms of ZIF-8-derived MFCMs are discussed thoroughly in order to construct structure-activity relationships. On this basis, recent advances in their environmental and energy applications are outlined, then economic and technical feasibility analyses are conducted to lay the foundation for their commercialization. Finally, valuable insights are provided into the current challenges and future prospects of ZIF-8-derived MFCMs.

Suggested Citation

  • Chen, Ao & Cheng, Min & Huang, Danlian & Zhang, Gaoxia & Wang, Wenjun & Du, Li & Wang, Guangfu & Liu, Hongda & Chen, Yongxi & Xiao, Wenjun & Shi, Qingkai, 2024. "Versatile metal-free carbon materials from ZIF-8: Insights into construction strategies, properties, applications and structure-activity relationships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:rensus:v:199:y:2024:i:c:s1364032124002430
    DOI: 10.1016/j.rser.2024.114520
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124002430
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114520?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuxiang Li & Zaixing Yang & Yanlong Wang & Zhuanling Bai & Tao Zheng & Xing Dai & Shengtang Liu & Daxiang Gui & Wei Liu & Meng Chen & Lanhua Chen & Juan Diwu & Lingyan Zhu & Ruhong Zhou & Zhifang Chai, 2017. "A mesoporous cationic thorium-organic framework that rapidly traps anionic persistent organic pollutants," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    2. Raoof, Jahan-Bakhsh & Hosseini, Sayed Reza & Ojani, Reza & Mandegarzad, Sakineh, 2015. "MOF-derived Cu/nanoporous carbon composite and its application for electro-catalysis of hydrogen evolution reaction," Energy, Elsevier, vol. 90(P1), pages 1075-1081.
    3. Xiangdong Li & Ling Jin & Haidong Kan, 2019. "Air pollution: a global problem needs local fixes," Nature, Nature, vol. 570(7762), pages 437-439, June.
    4. Yang Wen & Kai He & Yujie Zhu & Fudong Han & Yunhua Xu & Isamu Matsuda & Yoshitaka Ishii & John Cumings & Chunsheng Wang, 2014. "Expanded graphite as superior anode for sodium-ion batteries," Nature Communications, Nature, vol. 5(1), pages 1-10, September.
    5. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yubao & Huang, Xiaozhou & Huang, Zhendong, 2024. "Energy-related uncertainty and Chinese stock market returns," Finance Research Letters, Elsevier, vol. 62(PB).
    2. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    3. Muhammad Habib Ur Rehman & Luigi Coppola & Ernestino Lufrano & Isabella Nicotera & Cataldo Simari, 2023. "Enhancing Water Retention, Transport, and Conductivity Performance in Fuel Cell Applications: Nafion-Based Nanocomposite Membranes with Organomodified Graphene Oxide Nanoplatelets," Energies, MDPI, vol. 16(23), pages 1-11, November.
    4. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    5. Mao, Guozhu & Zou, Hongyang & Chen, Guanyi & Du, Huibin & Zuo, Jian, 2015. "Past, current and future of biomass energy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1823-1833.
    6. Luo, Rongrong & Wang, Liuwei & Yu, Wei & Shao, Feilong & Shen, Haikuo & Xie, Huaqing, 2023. "High energy storage density titanium nitride-pentaerythritol solid–solid composite phase change materials for light-thermal-electric conversion," Applied Energy, Elsevier, vol. 331(C).
    7. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    8. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    9. Yang, Jingluan & Chen, Wei, 2023. "Unravelling the landscape of global cobalt trade: Patterns, robustness, and supply chain security," Resources Policy, Elsevier, vol. 86(PB).
    10. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    11. Li, Jinpeng & Chen, Xiangjie & Li, Guiqiang, 2023. "Effect of separation wavelength on a novel solar-driven hybrid hydrogen production system (SDHPS) by solar full spectrum energy," Renewable Energy, Elsevier, vol. 215(C).
    12. Sicong Wang & Changhai Qin & Yong Zhao & Jing Zhao & Yuping Han, 2023. "The Evolutionary Path of the Center of Gravity for Water Use, the Population, and the Economy, and Their Decomposed Contributions in China from 1965 to 2019," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    13. Cheng, Qian & Liu, Pan & Xia, Qian & Cheng, Lei & Ming, Bo & Zhang, Wei & Xu, Weifeng & Zheng, Yalian & Han, Dongyang & Xia, Jun, 2023. "An analytical method to evaluate curtailment of hydro–photovoltaic hybrid energy systems and its implication under climate change," Energy, Elsevier, vol. 278(C).
    14. Feng Zhou & Chunhui Wen, 2023. "Research on the Level of Agricultural Green Development, Regional Disparities, and Dynamic Distribution Evolution in China from the Perspective of Sustainable Development," Agriculture, MDPI, vol. 13(7), pages 1-47, July.
    15. Zhang, Kaiqiang & Jia, Na & Liu, Lirong, 2019. "CO2 storage in fractured nanopores underground: Phase behaviour study," Applied Energy, Elsevier, vol. 238(C), pages 911-928.
    16. Chen, Xinhui & Wei, Jianfeng & Sheng, Songwei & Wang, Wensheng & Wang, Kunlin & Zhang, Yaqun & Wang, Zhenpeng, 2023. "Design and experimental study of a novel type water-filled submerged flexible bag wave energy converter," Renewable Energy, Elsevier, vol. 218(C).
    17. Cai, Hua & Hu, Xiaojun & Xu, Ming, 2013. "Impact of emerging clean vehicle system on water stress," Applied Energy, Elsevier, vol. 111(C), pages 644-651.
    18. Griffin, Paul A. & Jaffe, Amy Myers & Lont, David H. & Dominguez-Faus, Rosa, 2015. "Science and the stock market: Investors' recognition of unburnable carbon," Energy Economics, Elsevier, vol. 52(PA), pages 1-12.
    19. Li, Zhenpeng & Ma, Tao, 2022. "Theoretic efficiency limit and design criteria of solar photovoltaics with high visual perceptibility," Applied Energy, Elsevier, vol. 324(C).
    20. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:199:y:2024:i:c:s1364032124002430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.