IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v86y2015icp488-499.html
   My bibliography  Save this article

Preparation of jet fuel range hydrocarbons by catalytic transformation of bio-oil derived from fast pyrolysis of straw stalk

Author

Listed:
  • Wang, Jicong
  • Bi, Peiyan
  • Zhang, Yajing
  • Xue, He
  • Jiang, Peiwen
  • Wu, Xiaoping
  • Liu, Junxu
  • Wang, Tiejun
  • Li, Quanxin

Abstract

The growing demand of commercial jet fuels, in combination with the strict environmental legislations, has led to immense interest in developing aviation biofuels. This work demonstrated that the bio-oil derived from fast pyrolysis of straw stalk was able to be converted into the jet and diesel fuel range hydrocarbons by a designed transformation route. This transformation included three reaction steps: (i) the catalytic cracking of bio-oil into low-carbon aromatics and light olefins, (ii) the synthesis of C8–C15 aromatic hydrocarbons by the alkylation of low-carbon aromatics with light olefins, and (iii) the production of C8–C15 cyclic alkanes by the hydrogenation of C8–C15 aromatics. It was also demonstrated that the production of the desired C8–C15 aromatics with a high selectivity of 88.4% was achieved by the low temperature alkylation reactions of the bio-oil-derived aromatics using the ionic liquid of [bmim]Cl–2AlCl3 (1-butyl-3-methylimidazolium chloroaluminate). The synthetic biofuels basically met the main technical specifications of jet fuels based on the combustion heat, viscosity, freeze point and other characteristics of fuels.

Suggested Citation

  • Wang, Jicong & Bi, Peiyan & Zhang, Yajing & Xue, He & Jiang, Peiwen & Wu, Xiaoping & Liu, Junxu & Wang, Tiejun & Li, Quanxin, 2015. "Preparation of jet fuel range hydrocarbons by catalytic transformation of bio-oil derived from fast pyrolysis of straw stalk," Energy, Elsevier, vol. 86(C), pages 488-499.
  • Handle: RePEc:eee:energy:v:86:y:2015:i:c:p:488-499
    DOI: 10.1016/j.energy.2015.04.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215005083
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.04.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fortier, Marie-Odile P. & Roberts, Griffin W. & Stagg-Williams, Susan M. & Sturm, Belinda S.M., 2014. "Life cycle assessment of bio-jet fuel from hydrothermal liquefaction of microalgae," Applied Energy, Elsevier, vol. 122(C), pages 73-82.
    2. Liu, Guangrui & Yan, Beibei & Chen, Guanyi, 2013. "Technical review on jet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 59-70.
    3. Daroch, Maurycy & Geng, Shu & Wang, Guangyi, 2013. "Recent advances in liquid biofuel production from algal feedstocks," Applied Energy, Elsevier, vol. 102(C), pages 1371-1381.
    4. Xu, Ying & Wang, Tiejun & Ma, Longlong & Zhang, Qi & Liang, Wei, 2010. "Upgrading of the liquid fuel from fast pyrolysis of biomass over MoNi/[gamma]-Al2O3 catalysts," Applied Energy, Elsevier, vol. 87(9), pages 2886-2891, September.
    5. Theodore Dickerson & Juan Soria, 2013. "Catalytic Fast Pyrolysis: A Review," Energies, MDPI, vol. 6(1), pages 1-25, January.
    6. Fatih Demirbas, M., 2009. "Biorefineries for biofuel upgrading: A critical review," Applied Energy, Elsevier, vol. 86(Supplemen), pages 151-161, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Rui & He, Yuting & Luo, Yuehui & Lou, DanFeng & Zhu, Rui & Zhu, Can & Li, Quanxin, 2023. "Selective preparation of jet fuels from low carbon alcohols and ABE at atmospheric pressure," Energy, Elsevier, vol. 281(C).
    2. Hansen, Samuel & Mirkouei, Amin & Diaz, Luis A., 2020. "A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    3. Shamsul, N.S. & Kamarudin, S.K. & Rahman, N.A., 2017. "Conversion of bio-oil to bio gasoline via pyrolysis and hydrothermal: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 538-549.
    4. Why, Elaine Siew Kuan & Ong, Hwai Chyuan & Lee, Hwei Voon & Chen, Wei-Hsin & Asikin-Mijan, N. & Varman, Mahendra & Loh, Wen Jing, 2022. "Single-step catalytic deoxygenation of palm feedstocks for the production of sustainable bio-jet fuel," Energy, Elsevier, vol. 239(PB).
    5. Li, Zhixia & Huang, Zhentao & Ding, Shilei & Li, Fuwei & Wang, Zhaohe & Lin, Hongfei & Chen, Congjin, 2018. "Catalytic conversion of waste cooking oil to fuel oil: Catalyst design and effect of solvent," Energy, Elsevier, vol. 157(C), pages 270-277.
    6. Chen, Yu-Kai & Lin, Cheng-Han & Wang, Wei-Cheng, 2020. "The conversion of biomass into renewable jet fuel," Energy, Elsevier, vol. 201(C).
    7. Bayrakdar Ates, Ezgi, 2023. "Synthesis of Ni/Clinoptilolite catalyst by modified polyol method for upgrading of bio-oil produced from hazelnut husk pyrolysis," Renewable Energy, Elsevier, vol. 219(P2).
    8. Gutiérrez-Antonio, C. & Gómez-Castro, F.I. & de Lira-Flores, J.A. & Hernández, S., 2017. "A review on the production processes of renewable jet fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 709-729.
    9. Ming, Zi-Qiang & Liu, Yun-Quan & Ye, Yue-Yuan & Li, Shui-Rong & Zhao, Ying-Ru & Wang, Duo, 2016. "Study of a new combined method for pre-extraction of essential oils and catalytic fast pyrolysis of pine sawdust," Energy, Elsevier, vol. 116(P1), pages 558-566.
    10. Kroyan, Yuri & Wojcieszyk, Michał & Kaario, Ossi & Larmi, Martti, 2022. "Modeling the impact of sustainable aviation fuel properties on end-use performance and emissions in aircraft jet engines," Energy, Elsevier, vol. 255(C).
    11. Araújo, Aruzza Mabel de Morais & Lima, Regineide de Oliveira & Gondim, Amanda Duarte & Diniz, Juraci & Souza, Luiz Di & Araujo, Antonio Souza de, 2017. "Thermal and catalytic pyrolysis of sunflower oil using AlMCM-41," Renewable Energy, Elsevier, vol. 101(C), pages 900-906.
    12. Shahinuzzaman, M. & Yaakob, Zahira & Ahmed, Yunus, 2017. "Non-sulphide zeolite catalyst for bio-jet-fuel conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1375-1384.
    13. Xing, Shiyou & Yuan, Haoran & Huhetaoli, & Qi, Yujie & Lv, Pengmei & Yuan, Zhenhong & Chen, Yong, 2016. "Characterization of the decomposition behaviors of catalytic pyrolysis of wood using copper and potassium over thermogravimetric and Py-GC/MS analysis," Energy, Elsevier, vol. 114(C), pages 634-646.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yajing & Bi, Peiyan & Wang, Jicong & Jiang, Peiwen & Wu, Xiaoping & Xue, He & Liu, Junxu & Zhou, Xiaoguo & Li, Quanxin, 2015. "Production of jet and diesel biofuels from renewable lignocellulosic biomass," Applied Energy, Elsevier, vol. 150(C), pages 128-137.
    2. Shahinuzzaman, M. & Yaakob, Zahira & Ahmed, Yunus, 2017. "Non-sulphide zeolite catalyst for bio-jet-fuel conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1375-1384.
    3. Zhang, Zhaoxia & Bi, Peiyan & Jiang, Peiwen & Fan, Minghui & Deng, Shumei & Zhai, Qi & Li, Quanxin, 2015. "Production of gasoline fraction from bio-oil under atmospheric conditions by an integrated catalytic transformation process," Energy, Elsevier, vol. 90(P2), pages 1922-1930.
    4. Fernand, Francois & Israel, Alvaro & Skjermo, Jorunn & Wichard, Thomas & Timmermans, Klaas R. & Golberg, Alexander, 2017. "Offshore macroalgae biomass for bioenergy production: Environmental aspects, technological achievements and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 35-45.
    5. Cremonez, Paulo André & Feroldi, Michael & de Araújo, Amanda Viana & Negreiros Borges, Maykon & Weiser Meier, Thompson & Feiden, Armin & Gustavo Teleken, Joel, 2015. "Biofuels in Brazilian aviation: Current scenario and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1063-1072.
    6. Muley, P.D. & Henkel, C.E. & Aguilar, G. & Klasson, K.T. & Boldor, D., 2016. "Ex situ thermo-catalytic upgrading of biomass pyrolysis vapors using a traveling wave microwave reactor," Applied Energy, Elsevier, vol. 183(C), pages 995-1004.
    7. Ahmad, Salman & Ouenniche, Jamal & Kolosz, Ben W. & Greening, Philip & Andresen, John M. & Maroto-Valer, M. Mercedes & Xu, Bing, 2021. "A stakeholders’ participatory approach to multi-criteria assessment of sustainable aviation fuels production pathways," International Journal of Production Economics, Elsevier, vol. 238(C).
    8. Song, Miaojia & Zhang, Xinghua & Chen, Yubao & Zhang, Qi & Chen, Lungang & Liu, Jianguo & Ma, Longlong, 2023. "Hydroprocessing of lipids: An effective production process for sustainable aviation fuel," Energy, Elsevier, vol. 283(C).
    9. Prajitno, Hermawan & Insyani, Rizki & Park, Jongkeun & Ryu, Changkook & Kim, Jaehoon, 2016. "Non-catalytic upgrading of fast pyrolysis bio-oil in supercritical ethanol and combustion behavior of the upgraded oil," Applied Energy, Elsevier, vol. 172(C), pages 12-22.
    10. Kabir, G. & Hameed, B.H., 2017. "Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 945-967.
    11. Jin, Wenjia & Singh, Kaushlendra & Zondlo, John, 2015. "Co-processing of pyrolysis vapors with bio-chars for ex-situ upgrading," Renewable Energy, Elsevier, vol. 83(C), pages 638-645.
    12. Martinez-Hernandez, Elias & Sadhukhan, Jhuma & Campbell, Grant M., 2013. "Integration of bioethanol as an in-process material in biorefineries using mass pinch analysis," Applied Energy, Elsevier, vol. 104(C), pages 517-526.
    13. Byun, Jaewon & Han, Jeehoon, 2016. "Process synthesis and analysis for catalytic conversion of lignocellulosic biomass to fuels: Separate conversion of cellulose and hemicellulose using 2-sec-butylphenol (SBP) solvent," Applied Energy, Elsevier, vol. 171(C), pages 483-490.
    14. Saber, Mohammad & Nakhshiniev, Bakhtiyor & Yoshikawa, Kunio, 2016. "A review of production and upgrading of algal bio-oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 918-930.
    15. Yilmaz, Nadir & Atmanli, Alpaslan, 2017. "Sustainable alternative fuels in aviation," Energy, Elsevier, vol. 140(P2), pages 1378-1386.
    16. Zhang, Qing & Wang, Tiejun & Li, Bing & Jiang, Ting & Ma, Longlong & Zhang, Xinghua & Liu, Qiying, 2012. "Aqueous phase reforming of sorbitol to bio-gasoline over Ni/HZSM-5 catalysts," Applied Energy, Elsevier, vol. 97(C), pages 509-513.
    17. Kandaramath Hari, Thushara & Yaakob, Zahira & Binitha, Narayanan N., 2015. "Aviation biofuel from renewable resources: Routes, opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1234-1244.
    18. de Jesus, Sérgio S. & Ferreira, Gabriela F. & Moreira, Larissa S. & Filho, Rubens Maciel, 2020. "Biodiesel production from microalgae by direct transesterification using green solvents," Renewable Energy, Elsevier, vol. 160(C), pages 1283-1294.
    19. Aboagye, D. & Banadda, N. & Kiggundu, N. & Kabenge, I., 2017. "Assessment of orange peel waste availability in ghana and potential bio-oil yield using fast pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 814-821.
    20. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.

    More about this item

    Keywords

    Bio-oil; Jet fuels; C8–C15 hydrocarbons; Alkylation;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:86:y:2015:i:c:p:488-499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.