IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v101y2017icp900-906.html
   My bibliography  Save this article

Thermal and catalytic pyrolysis of sunflower oil using AlMCM-41

Author

Listed:
  • Araújo, Aruzza Mabel de Morais
  • Lima, Regineide de Oliveira
  • Gondim, Amanda Duarte
  • Diniz, Juraci
  • Souza, Luiz Di
  • Araujo, Antonio Souza de

Abstract

This study was conducted on thermal pyrolysis and thermal-catalytic pyrolysis using the AlMCM-41 catalyst with a Si/Al ratio of 50, as an alternative process for turning sunflower oil into biofuel. The catalyst was characterized by X ray diffraction (XRD), N2 adsorption/desorption and total acidity by adsorption of n-butylamine, in which it was confirmed an obtainment of AlMCM-41 with an excellent surface area of 857.7 m2 g−1 and good total acidity. TG curves were used to determine the calcination temperature (450 °C) and the infrared spectroscopy (FTIR) confirmed a complete removal of the CTMA+. Two liquid fractions were obtained from the thermal and thermal-catalytic pyrolysis of sunflower oil: the first, named bio-oil, is a mixture of hydrocarbons similar to mineral diesel; the second, which was named acid fraction, is composed mainly of high acidity components. It was found by gas chromatography (GC/MS) and infrared spectroscopy (FTIR) that the proportion of acid present in the fraction of bio-oil without catalyst is higher than the proportion of acids in the fraction of bio-oil with catalyst, which indicates that the deoxygenation of the products occurred. Thus, it can be noted that the thermal catalytic sample of the bio-oil features more appropriate results to the diesel range, indicating that the acid sites found in AlMCM-41 catalysts were effective for the oil pyrolysis.

Suggested Citation

  • Araújo, Aruzza Mabel de Morais & Lima, Regineide de Oliveira & Gondim, Amanda Duarte & Diniz, Juraci & Souza, Luiz Di & Araujo, Antonio Souza de, 2017. "Thermal and catalytic pyrolysis of sunflower oil using AlMCM-41," Renewable Energy, Elsevier, vol. 101(C), pages 900-906.
  • Handle: RePEc:eee:renene:v:101:y:2017:i:c:p:900-906
    DOI: 10.1016/j.renene.2016.09.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116308485
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.09.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jicong & Bi, Peiyan & Zhang, Yajing & Xue, He & Jiang, Peiwen & Wu, Xiaoping & Liu, Junxu & Wang, Tiejun & Li, Quanxin, 2015. "Preparation of jet fuel range hydrocarbons by catalytic transformation of bio-oil derived from fast pyrolysis of straw stalk," Energy, Elsevier, vol. 86(C), pages 488-499.
    2. César, Aldara da Silva & Batalha, Mário Otávio & Zopelari, André Luiz Miranda Silva, 2013. "Oil palm biodiesel: Brazil's main challenges," Energy, Elsevier, vol. 60(C), pages 485-491.
    3. Biswas, Shelly & Mohanty, Pravakar & Sharma, D.K., 2014. "Studies on co-cracking of jatropha oil with bagasse to obtain liquid, gaseous product and char," Renewable Energy, Elsevier, vol. 63(C), pages 308-316.
    4. Hermida, Lilis & Abdullah, Ahmad Zuhairi & Mohamed, Abdul Rahman, 2015. "Deoxygenation of fatty acid to produce diesel-like hydrocarbons: A review of process conditions, reaction kinetics and mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1223-1233.
    5. Na, Jeong-Geol & Park, Young-Kwon & Kim, Doo Il & Oh, You-Kwan & Jeon, Sang Goo & Kook, Jin Woo & Shin, Ji Hoon & Lee, See Hoon, 2015. "Rapid pyrolysis behavior of oleaginous microalga, Chlorella sp. KR-1 with different triglyceride contents," Renewable Energy, Elsevier, vol. 81(C), pages 779-784.
    6. Clarke, J.A. & Grant, A.D., 1996. "Planning support tools for the integration of renewable energy at the regional level," Renewable Energy, Elsevier, vol. 9(1), pages 1090-1093.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ozbay, Nurgul & Yargic, Adife Seyda & Yarbay Sahin, Rahmiye Zerrin & Yaman, Elif, 2019. "Valorization of banana peel waste via in-situ catalytic pyrolysis using Al-Modified SBA-15," Renewable Energy, Elsevier, vol. 140(C), pages 633-646.
    2. Souza, Márcio C.M. & Maia, Francisco A.D. & Pinto, Vasco L. & Costa, Maria J.F. & Araújo, Aruzza M.M. & da Silva, Djalma R. & Santos, Anne Gabriella D. & Gondim, Amanda D., 2023. "Highly porous cobalt and molybdenum-containing ordered silica applied to pyrolysis of sunflower oil into bio-hydrocarbons," Renewable Energy, Elsevier, vol. 215(C).
    3. Das, Bikashbindu & Mohanty, Kaustubha, 2019. "A review on advances in sustainable energy production through various catalytic processes by using catalysts derived from waste red mud," Renewable Energy, Elsevier, vol. 143(C), pages 1791-1811.
    4. Musyaroh, & Wijayanti, Widya & Sasongko, Mega Nur & Winarto,, 2023. "The role of limonene in the branching of straight chains in low-octane hydrocarbons," Renewable Energy, Elsevier, vol. 204(C), pages 421-431.
    5. Sembiring, Kiky Corneliasari & Aunillah, Asif & Minami, Eiji & Saka, Shiro, 2018. "Renewable gasoline production from oleic acid by oxidative cleavage followed by decarboxylation," Renewable Energy, Elsevier, vol. 122(C), pages 602-607.
    6. Kusworo, Tutuk Djoko & Widayat, Widayat & Utomo, Dani Puji & Pratama, Yulius Harmawan Setya & Arianti, Riska Anindisa Vira, 2020. "Performance evaluation of modified nanohybrid membrane polyethersulfone-nano ZnO (PES-nano ZnO) using three combination effect of PVP, irradiation of ultraviolet and thermal for biodiesel purification," Renewable Energy, Elsevier, vol. 148(C), pages 935-945.
    7. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Bi-Shuang & Zeng, Yong-Yi & Liu, Lan & Chen, Lei & Duan, Peigao & Luque, Rafael & Ge, Ran & Zhang, Wuyuan, 2022. "Advances in catalytic decarboxylation of bioderived fatty acids to diesel-range alkanes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Xu, Junming & Jiang, Jianchun & Zhao, Jiaping, 2016. "Thermochemical conversion of triglycerides for production of drop-in liquid fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 331-340.
    3. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    4. Cremonez, Paulo André & Feroldi, Michael & de Araújo, Amanda Viana & Negreiros Borges, Maykon & Weiser Meier, Thompson & Feiden, Armin & Gustavo Teleken, Joel, 2015. "Biofuels in Brazilian aviation: Current scenario and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1063-1072.
    5. Chen, Yu-Kai & Lin, Cheng-Han & Wang, Wei-Cheng, 2020. "The conversion of biomass into renewable jet fuel," Energy, Elsevier, vol. 201(C).
    6. Yu, Dayu & Hu, Shuang & Liu, Weishan & Wang, Xiaoning & Jiang, Haifeng & Dong, Nanhang, 2020. "Pyrolysis of oleaginous yeast biomass from wastewater treatment: Kinetics analysis and biocrude characterization," Renewable Energy, Elsevier, vol. 150(C), pages 831-839.
    7. Rico, J.A.P. & Sauer, I.L., 2015. "A review of Brazilian biodiesel experiences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 513-529.
    8. Qianna Wang & Martin Mwirigi M'Ikiugu & Isami Kinoshita, 2014. "A GIS-Based Approach in Support of Spatial Planning for Renewable Energy: A Case Study of Fukushima, Japan," Sustainability, MDPI, vol. 6(4), pages 1-31, April.
    9. Sellin, Noeli & Krohl, Diego Ricardo & Marangoni, Cintia & Souza, Ozair, 2016. "Oxidative fast pyrolysis of banana leaves in fluidized bed reactor," Renewable Energy, Elsevier, vol. 96(PA), pages 56-64.
    10. Thongkumkoon, Skonrach & Kiatkittipong, Worapon & Hartley, Unalome Wetwatana & Laosiripojana, Navadol & Daorattanachai, Pornlada, 2019. "Catalytic activity of trimetallic sulfided Re-Ni-Mo/γ-Al2O3 toward deoxygenation of palm feedstocks," Renewable Energy, Elsevier, vol. 140(C), pages 111-123.
    11. Grassi, Stefano & Chokani, Ndaona & Abhari, Reza S., 2012. "Large scale technical and economical assessment of wind energy potential with a GIS tool: Case study Iowa," Energy Policy, Elsevier, vol. 45(C), pages 73-85.
    12. Hafriz, R.S.R.M. & Shafizah, I. Nor & Arifin, N.A. & Salmiaton, A. & Yunus, R. & Yap, Y.H. Taufiq & Shamsuddin, A.H., 2021. "Effect of Ni/Malaysian dolomite catalyst synthesis technique on deoxygenation reaction activity of waste cooking oil," Renewable Energy, Elsevier, vol. 178(C), pages 128-143.
    13. Li, Xin & Luo, Xingyi & Jin, Yangbin & Li, Jinyan & Zhang, Hongdan & Zhang, Aiping & Xie, Jun, 2018. "Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable bio-oils to second generation biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3762-3797.
    14. Yoosuk, Boonyawan & Sanggam, Paphawee & Wiengket, Sakdipat & Prasassarakich, Pattarapan, 2019. "Hydrodeoxygenation of oleic acid and palmitic acid to hydrocarbon-like biofuel over unsupported Ni-Mo and Co-Mo sulfide catalysts," Renewable Energy, Elsevier, vol. 139(C), pages 1391-1399.
    15. Shahinuzzaman, M. & Yaakob, Zahira & Ahmed, Yunus, 2017. "Non-sulphide zeolite catalyst for bio-jet-fuel conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1375-1384.
    16. Li, Zhixia & Huang, Zhentao & Ding, Shilei & Li, Fuwei & Wang, Zhaohe & Lin, Hongfei & Chen, Congjin, 2018. "Catalytic conversion of waste cooking oil to fuel oil: Catalyst design and effect of solvent," Energy, Elsevier, vol. 157(C), pages 270-277.
    17. Bayrakdar Ates, Ezgi, 2023. "Synthesis of Ni/Clinoptilolite catalyst by modified polyol method for upgrading of bio-oil produced from hazelnut husk pyrolysis," Renewable Energy, Elsevier, vol. 219(P2).
    18. Chiaramonti, David & Prussi, Matteo & Buffi, Marco & Rizzo, Andrea Maria & Pari, Luigi, 2017. "Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production," Applied Energy, Elsevier, vol. 185(P2), pages 963-972.
    19. André Cremonez, Paulo & Feroldi, Michael & Cézar Nadaleti, Willian & de Rossi, Eduardo & Feiden, Armin & de Camargo, Mariele Pasuch & Cremonez, Filipe Eliazar & Klajn, Felipe Fernandes, 2015. "Biodiesel production in Brazil: Current scenario and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 415-428.
    20. Burimsitthigul, Thikhamporn & Yoosuk, Boonyawan & Ngamcharussrivichai, Chawalit & Prasassarakich, Pattarapan, 2021. "Hydrocarbon biofuel from hydrotreating of palm oil over unsupported Ni–Mo sulfide catalysts," Renewable Energy, Elsevier, vol. 163(C), pages 1648-1659.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:101:y:2017:i:c:p:900-906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.