IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v281y2023ics0360544223016407.html
   My bibliography  Save this article

Selective preparation of jet fuels from low carbon alcohols and ABE at atmospheric pressure

Author

Listed:
  • Zhang, Rui
  • He, Yuting
  • Luo, Yuehui
  • Lou, DanFeng
  • Zhu, Rui
  • Zhu, Can
  • Li, Quanxin

Abstract

Developing efficient jet-fuel synthesis route using bio-based low carbon alcohols or ABE (acetone/butanol/ethanol) is of great significance in reducing carbon emission. The objective of this work is to demonstrate that jet fuels can be selectively prepared from ABE and low carbon alcohols under atmospheric pressure condition. This controllable synthetic strategy was based on the two-step processes: selective dehydration of ABE (or low-carbon alcohols) into light olefins over the Ce@Fe@SAPO-34 catalyst and olefin polymerization into jet fuels over the ionic liquid catalyst ([bmim]Cl–2AlCl3). The optimizations of the catalysts and reaction conditions were investigated in detail. Under the atmospheric pressure, high ABE conversion (89.3%) and high jet fuel yield (71.5%) were achieved through coupling the two-step process.

Suggested Citation

  • Zhang, Rui & He, Yuting & Luo, Yuehui & Lou, DanFeng & Zhu, Rui & Zhu, Can & Li, Quanxin, 2023. "Selective preparation of jet fuels from low carbon alcohols and ABE at atmospheric pressure," Energy, Elsevier, vol. 281(C).
  • Handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223016407
    DOI: 10.1016/j.energy.2023.128246
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223016407
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128246?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jicong & Bi, Peiyan & Zhang, Yajing & Xue, He & Jiang, Peiwen & Wu, Xiaoping & Liu, Junxu & Wang, Tiejun & Li, Quanxin, 2015. "Preparation of jet fuel range hydrocarbons by catalytic transformation of bio-oil derived from fast pyrolysis of straw stalk," Energy, Elsevier, vol. 86(C), pages 488-499.
    2. Pazhamalai Anbarasan & Zachary C. Baer & Sanil Sreekumar & Elad Gross & Joseph B. Binder & Harvey W. Blanch & Douglas S. Clark & F. Dean Toste, 2012. "Integration of chemical catalysis with extractive fermentation to produce fuels," Nature, Nature, vol. 491(7423), pages 235-239, November.
    3. Díaz, Marta & Epelde, Eva & Tabernilla, Zuria & Ateka, Ainara & Aguayo, Andrés T. & Bilbao, Javier, 2020. "Operating conditions to maximize clean liquid fuels yield by oligomerization of 1-butene on HZSM-5 zeolite catalysts," Energy, Elsevier, vol. 207(C).
    4. Shuxing Bai & Fangfang Liu & Bolong Huang & Fan Li & Haiping Lin & Tong Wu & Mingzi Sun & Jianbo Wu & Qi Shao & Yong Xu & Xiaoqing Huang, 2020. "High-efficiency direct methane conversion to oxygenates on a cerium dioxide nanowires supported rhodium single-atom catalyst," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Le & Lin, Hongju & Fang, Zhihao & Yang, Yanhui & Liu, Xiaohao & Ouyang, Gangfeng, 2023. "Recent advances on methane partial oxidation toward oxygenates under mild conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    2. Chen, Yu-Kai & Lin, Cheng-Han & Wang, Wei-Cheng, 2020. "The conversion of biomass into renewable jet fuel," Energy, Elsevier, vol. 201(C).
    3. Xu, Xiwei & Jiang, Enchen & Li, Zhiyu & Zhu, Xiongfa & Sun, Yan & Tu, Ren, 2019. "Alkene and benzene derivate obtained from catalytic reforming of acetone-butanol-ethanol (ABE) from carbohydrates fermentation broth," Renewable Energy, Elsevier, vol. 135(C), pages 1213-1223.
    4. Xiao-Li Xu & Nian-Nian Wang & Yong-Hao Zou & Xiao Qin & Peng Wang & Xiang-Yu Lu & Xiao-Yu Zhang & Wei-Yin Sun & Yi Lu, 2024. "N, N’-bidentate ligand anchored palladium catalysts on MOFs for efficient Heck reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Shengzhe Ding & Dario Luis Fernandez Ainaga & Min Hu & Boya Qiu & Ushna Khalid & Carmine D’Agostino & Xiaoxia Ou & Ben Spencer & Xiangli Zhong & Yani Peng & Nicole Hondow & Constantinos Theodoropoulos, 2024. "Spatial segregation of catalytic sites within Pd doped H-ZSM-5 for fatty acid hydrodeoxygenation to alkanes," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Shahinuzzaman, M. & Yaakob, Zahira & Ahmed, Yunus, 2017. "Non-sulphide zeolite catalyst for bio-jet-fuel conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1375-1384.
    7. Chongyang Tang & Cong Wei & Yanyan Fang & Bo Liu & Xianyin Song & Zenan Bian & Xuanwei Yin & Hongbo Wang & Zhaohui Liu & Gongming Wang & Xiangheng Xiao & Xiangfeng Duan, 2024. "Electrocatalytic hydrogenation of acetonitrile to ethylamine in acid," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Tong Wang & Tuo Zhou & Chaoran Li & Qiang Song & Man Zhang & Hairui Yang, 2024. "Development Status and Prospects of Biomass Energy in China," Energies, MDPI, vol. 17(17), pages 1-25, September.
    9. Bayrakdar Ates, Ezgi, 2023. "Synthesis of Ni/Clinoptilolite catalyst by modified polyol method for upgrading of bio-oil produced from hazelnut husk pyrolysis," Renewable Energy, Elsevier, vol. 219(P2).
    10. Araújo, Aruzza Mabel de Morais & Lima, Regineide de Oliveira & Gondim, Amanda Duarte & Diniz, Juraci & Souza, Luiz Di & Araujo, Antonio Souza de, 2017. "Thermal and catalytic pyrolysis of sunflower oil using AlMCM-41," Renewable Energy, Elsevier, vol. 101(C), pages 900-906.
    11. Gutiérrez-Antonio, C. & Gómez-Castro, F.I. & de Lira-Flores, J.A. & Hernández, S., 2017. "A review on the production processes of renewable jet fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 709-729.
    12. Ming, Zi-Qiang & Liu, Yun-Quan & Ye, Yue-Yuan & Li, Shui-Rong & Zhao, Ying-Ru & Wang, Duo, 2016. "Study of a new combined method for pre-extraction of essential oils and catalytic fast pyrolysis of pine sawdust," Energy, Elsevier, vol. 116(P1), pages 558-566.
    13. Tabernilla, Zuria & Ateka, Ainara & Bilbao, Javier & Aguayo, Andrés T. & Epelde, Eva, 2023. "Performance of HZSM-5 agglomerated in a mesoporous matrix in the fuel production from ethylene at atmospheric pressure," Energy, Elsevier, vol. 284(C).
    14. Wang, Wei-Cheng & Tao, Ling, 2016. "Bio-jet fuel conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 801-822.
    15. Zhufan Zou & Zhenjie Yu & Weixiang Guan & Yanfang Liu & Yumin Yao & Yang Han & Guangyi Li & Aiqin Wang & Yu Cong & Xinmiao Liang & Tao Zhang & Ning Li, 2024. "Selective production of methylindan and tetralin with xylose or hemicellulose," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Why, Elaine Siew Kuan & Ong, Hwai Chyuan & Lee, Hwei Voon & Chen, Wei-Hsin & Asikin-Mijan, N. & Varman, Mahendra & Loh, Wen Jing, 2022. "Single-step catalytic deoxygenation of palm feedstocks for the production of sustainable bio-jet fuel," Energy, Elsevier, vol. 239(PB).
    17. Ketabchi, Elham & Pastor-Pérez, Laura & Reina, Tomas Ramirez & Arellano-García, Harvey, 2020. "Catalytic upgrading of acetone, butanol and ethanol (ABE): A step ahead for the production of added value chemicals in bio-refineries," Renewable Energy, Elsevier, vol. 156(C), pages 1065-1075.
    18. Kroyan, Yuri & Wojcieszyk, Michał & Kaario, Ossi & Larmi, Martti, 2022. "Modeling the impact of sustainable aviation fuel properties on end-use performance and emissions in aircraft jet engines," Energy, Elsevier, vol. 255(C).
    19. Jiwon Kim & Jae Hyung Kim & Cheoulwoo Oh & Hyewon Yun & Eunchong Lee & Hyung-Suk Oh & Jong Hyeok Park & Yun Jeong Hwang, 2023. "Electro-assisted methane oxidation to formic acid via in-situ cathodically generated H2O2 under ambient conditions," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Sabarathinam Shanmugam & Anjana Hari & Arivalagan Pugazhendhi & Timo Kikas, 2023. "Integrated Catalytic Upgrading of Biomass-Derived Alcohols for Advanced Biofuel Production," Energies, MDPI, vol. 16(13), pages 1-24, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223016407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.