IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v75y2017icp35-45.html
   My bibliography  Save this article

Offshore macroalgae biomass for bioenergy production: Environmental aspects, technological achievements and challenges

Author

Listed:
  • Fernand, Francois
  • Israel, Alvaro
  • Skjermo, Jorunn
  • Wichard, Thomas
  • Timmermans, Klaas R.
  • Golberg, Alexander

Abstract

Economic and environmental developments in the last decades call for the displacement of fossil fuels to alternative energy sources. Biofuels are considered as a part of the solution for this challenge. Sustainable raw materials for the production of transportation biofuels such as biodiesel, biobutanol and bioethanol, can be obtained from algal biomass. In particular, marine macroalgal biomass is a promising feedstock for transportation biofuels because of (the) its fast growth and its potential cultivation on seawater, avoiding competition of resources with conventional agriculture of terrestrial plants used for food. In addition, dissolved inorganic nutrients like nitrogen, phosphorous and carbon are taken up by macroalgae, helping to alleviate eutrophication in seas and oceans. Using biological, chemical and engineering advances in the last decades, technologies to provide cost efficient cultivation, harvesting, extraction and processing of sustainable biofuels have to be elaborated. This paper provides a review of macroalgae based biorefineries with offshore cultivation and consequent biomass conversion into transportation liquid biofuels. We discuss the methods for offshore cultivation, harvesting, and conversion of macroalgae biomass into liquid transportation biofuels. Based on the current information and global experience, we present local perspectives specific for France, Germany, Norway, the Netherlands and Israel on the potential use of Exclusive Economic Zone for transportation biofuels production. Marketable suggestions for future research need to include all stakeholders of a given site for offshore biorefinery development.

Suggested Citation

  • Fernand, Francois & Israel, Alvaro & Skjermo, Jorunn & Wichard, Thomas & Timmermans, Klaas R. & Golberg, Alexander, 2017. "Offshore macroalgae biomass for bioenergy production: Environmental aspects, technological achievements and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 35-45.
  • Handle: RePEc:eee:rensus:v:75:y:2017:i:c:p:35-45
    DOI: 10.1016/j.rser.2016.10.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116307018
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.10.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eric J. Steen & Yisheng Kang & Gregory Bokinsky & Zhihao Hu & Andreas Schirmer & Amy McClure & Stephen B. del Cardayre & Jay D. Keasling, 2010. "Microbial production of fatty-acid-derived fuels and chemicals from plant biomass," Nature, Nature, vol. 463(7280), pages 559-562, January.
    2. Fatih Demirbas, M., 2009. "Biorefineries for biofuel upgrading: A critical review," Applied Energy, Elsevier, vol. 86(Supplemen), pages 151-161, November.
    3. Wever, Lara & Krause, Gesche & Buck, Bela H., 2015. "Lessons from stakeholder dialogues on marine aquaculture in offshore wind farms: Perceived potentials, constraints and research gaps," Marine Policy, Elsevier, vol. 51(C), pages 251-259.
    4. Stefan Kraan, 2013. "Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(1), pages 27-46, January.
    5. Angeles Cancela & Rocio Maceiras & Santiago Urrejola & Angel Sanchez, 2012. "Microwave-Assisted Transesterification of Macroalgae," Energies, MDPI, vol. 5(4), pages 1-10, March.
    6. Daroch, Maurycy & Geng, Shu & Wang, Guangyi, 2013. "Recent advances in liquid biofuel production from algal feedstocks," Applied Energy, Elsevier, vol. 102(C), pages 1371-1381.
    7. Golberg, Alexander, 2015. "Environmental exergonomics for sustainable design and analysis of energy systems," Energy, Elsevier, vol. 88(C), pages 314-321.
    8. Dębowski, Marcin & Zieliński, Marcin & Grala, Anna & Dudek, Magda, 2013. "Algae biomass as an alternative substrate in biogas production technologies—Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 596-604.
    9. Maceiras, Rocio & Rodrı´guez, Mónica & Cancela, Angeles & Urréjola, Santiago & Sánchez, Angel, 2011. "Macroalgae: Raw material for biodiesel production," Applied Energy, Elsevier, vol. 88(10), pages 3318-3323.
    10. Pamela P. Peralta-Yahya & Mario Ouellet & Rossana Chan & Aindrila Mukhopadhyay & Jay D. Keasling & Taek Soon Lee, 2011. "Identification and microbial production of a terpene-based advanced biofuel," Nature Communications, Nature, vol. 2(1), pages 1-8, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Herika Mylena Medeiros de Queiroz Andrade & Luiz Pinguelli Rosa & Flavo Elano Soares de Souza & Neilton Fidelis da Silva & Maulori Curié Cabral & Dárlio Inácio Alves Teixeira, 2020. "Seaweed Production Potential in the Brazilian Northeast: A Study on the Eastern Coast of the State of Rio Grande do Norte, RN, Brazil," Sustainability, MDPI, vol. 12(3), pages 1-20, January.
    2. Kostas, Emily T. & Adams, Jessica M.M. & Ruiz, Héctor A. & Durán-Jiménez, Gabriela & Lye, Gary J., 2021. "Macroalgal biorefinery concepts for the circular bioeconomy: A review on biotechnological developments and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Gegg, Per & Wells, Victoria, 2019. "The development of seaweed-derived fuels in the UK: An analysis of stakeholder issues and public perceptions," Energy Policy, Elsevier, vol. 133(C).
    4. Sharma, Rozi & Malaviya, Piyush, 2023. "Ecosystem services and climate action from a circular bioeconomy perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    5. Sudhakar, K. & Mamat, R. & Samykano, M. & Azmi, W.H. & Ishak, W.F.W. & Yusaf, Talal, 2018. "An overview of marine macroalgae as bioresource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 165-179.
    6. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Guiyan Zang & Jianan Zhang & Junxi Jia & Nathaniel Weger & Albert Ratner, 2019. "Clean Poultry Energy System Design Based on Biomass Gasification Technology: Thermodynamic and Economic Analysis," Energies, MDPI, vol. 12(22), pages 1-18, November.
    8. Kouhgardi, Esmaeil & Zendehboudi, Sohrab & Mohammadzadeh, Omid & Lohi, Ali & Chatzis, Ioannis, 2023. "Current status and future prospects of biofuel production from brown algae in North America: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    9. Jingjing Wu & Shane W. Rogers & Rebekah Schaummann & Nichole N. Price, 2023. "A Comparison of Multiple Macroalgae Cultivation Systems and End-Use Strategies of Saccharina latissima and Gracilaria tikvahiae Based on Techno-Economic Analysis and Life Cycle Assessment," Sustainability, MDPI, vol. 15(15), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Huihui & Zhou, Dong & Luo, Gang & Zhang, Shicheng & Chen, Jianmin, 2015. "Macroalgae for biofuels production: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 427-437.
    2. Montingelli, Maria E. & Benyounis, Khaled Y. & Quilty, Brid & Stokes, Joseph & Olabi, Abdul G., 2016. "Optimisation of biogas production from the macroalgae Laminaria sp. at different periods of harvesting in Ireland," Applied Energy, Elsevier, vol. 177(C), pages 671-682.
    3. Oncel, Suphi S., 2013. "Microalgae for a macroenergy world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 241-264.
    4. Suhaib A. Bandh & Fayaz A. Malla & Irteza Qayoom & Haika Mohi-Ud-Din & Aqsa Khursheed Butt & Aashia Altaf & Shahid A. Wani & Richard Betts & Thanh Hai Truong & Nguyen Dang Khoa Pham & Dao Nam Cao & Sh, 2023. "Importance of Blue Carbon in Mitigating Climate Change and Plastic/Microplastic Pollution and Promoting Circular Economy," Sustainability, MDPI, vol. 15(3), pages 1-29, February.
    5. Graham Rockwell & Nicholas J Guido & George M Church, 2013. "Redirector: Designing Cell Factories by Reconstructing the Metabolic Objective," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-15, January.
    6. Zhang, Yajing & Bi, Peiyan & Wang, Jicong & Jiang, Peiwen & Wu, Xiaoping & Xue, He & Liu, Junxu & Zhou, Xiaoguo & Li, Quanxin, 2015. "Production of jet and diesel biofuels from renewable lignocellulosic biomass," Applied Energy, Elsevier, vol. 150(C), pages 128-137.
    7. Kouhgardi, Esmaeil & Zendehboudi, Sohrab & Mohammadzadeh, Omid & Lohi, Ali & Chatzis, Ioannis, 2023. "Current status and future prospects of biofuel production from brown algae in North America: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    8. Sara García-Poza & Adriana Leandro & Carla Cotas & João Cotas & João C. Marques & Leonel Pereira & Ana M. M. Gonçalves, 2020. "The Evolution Road of Seaweed Aquaculture: Cultivation Technologies and the Industry 4.0," IJERPH, MDPI, vol. 17(18), pages 1-42, September.
    9. Das, Manali & Patra, Pradipta & Ghosh, Amit, 2020. "Metabolic engineering for enhancing microbial biosynthesis of advanced biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    10. Wang, Jicong & Bi, Peiyan & Zhang, Yajing & Xue, He & Jiang, Peiwen & Wu, Xiaoping & Liu, Junxu & Wang, Tiejun & Li, Quanxin, 2015. "Preparation of jet fuel range hydrocarbons by catalytic transformation of bio-oil derived from fast pyrolysis of straw stalk," Energy, Elsevier, vol. 86(C), pages 488-499.
    11. Sudhakar, K. & Mamat, R. & Samykano, M. & Azmi, W.H. & Ishak, W.F.W. & Yusaf, Talal, 2018. "An overview of marine macroalgae as bioresource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 165-179.
    12. Fionnuala Murphy & Ger Devlin & Rory Deverell & Kevin McDonnell, 2013. "Biofuel Production in Ireland—An Approach to 2020 Targets with a Focus on Algal Biomass," Energies, MDPI, vol. 6(12), pages 1-22, December.
    13. Gegg, Per & Wells, Victoria, 2019. "The development of seaweed-derived fuels in the UK: An analysis of stakeholder issues and public perceptions," Energy Policy, Elsevier, vol. 133(C).
    14. Martinez-Hernandez, Elias & Sadhukhan, Jhuma & Campbell, Grant M., 2013. "Integration of bioethanol as an in-process material in biorefineries using mass pinch analysis," Applied Energy, Elsevier, vol. 104(C), pages 517-526.
    15. Ramachandra, T.V. & Hebbale, Deepthi, 2020. "Bioethanol from macroalgae: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    16. Scaife, Mark A. & Merkx-Jacques, Alexandra & Woodhall, David L. & Armenta, Roberto E., 2015. "Algal biofuels in Canada: Status and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 620-642.
    17. de Jesus, Sérgio S. & Ferreira, Gabriela F. & Moreira, Larissa S. & Filho, Rubens Maciel, 2020. "Biodiesel production from microalgae by direct transesterification using green solvents," Renewable Energy, Elsevier, vol. 160(C), pages 1283-1294.
    18. Aboagye, D. & Banadda, N. & Kiggundu, N. & Kabenge, I., 2017. "Assessment of orange peel waste availability in ghana and potential bio-oil yield using fast pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 814-821.
    19. Qu, Yang & Hooper, Tara & Austen, Melanie C. & Papathanasopoulou, Eleni & Huang, Junling & Yan, Xiaoyu, 2023. "Development of a computable general equilibrium model based on integrated macroeconomic framework for ocean multi-use between offshore wind farms and fishing activities in Scotland," Applied Energy, Elsevier, vol. 332(C).
    20. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:75:y:2017:i:c:p:35-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.