IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v102y2013icp1371-1381.html
   My bibliography  Save this article

Recent advances in liquid biofuel production from algal feedstocks

Author

Listed:
  • Daroch, Maurycy
  • Geng, Shu
  • Wang, Guangyi

Abstract

Major challenges of the modern world: energy security, oil price, resources depletion and climate change, have prompted significant advances in research and development of biomass-derived energy and fuels. Algal biofuels are seen as one of the most promising solutions of global energy crisis and climate change for the years to come. Major advantages of algae are potentially high yield and no competition with food crops for arable land and fresh water resource. This review summarises recent advances in algal biofuel production and focuses on synthesis of transportation fuel rather than characterising algal feedstocks or their well-documented potential as bioenergy resource. The available literature covering production of bioethanol, biodiesel and other potential liquid fuels are evaluated. Overall finding from this study suggests that to date the most effective methods of producing biofuels from algal feedstocks are: fermentation of microalgae to bioethanol and production of biodiesel via in situ transesterification of microalgal biomass. The real breakthrough however is expected from metabolic engineering of photosynthetic organisms to produce and secrete biofuels that promises significant simplification of down-stream processing.

Suggested Citation

  • Daroch, Maurycy & Geng, Shu & Wang, Guangyi, 2013. "Recent advances in liquid biofuel production from algal feedstocks," Applied Energy, Elsevier, vol. 102(C), pages 1371-1381.
  • Handle: RePEc:eee:appene:v:102:y:2013:i:c:p:1371-1381
    DOI: 10.1016/j.apenergy.2012.07.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912005533
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.07.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harun, Razif & Jason, W.S.Y. & Cherrington, Tamara & Danquah, Michael K., 2011. "Exploring alkaline pre-treatment of microalgal biomass for bioethanol production," Applied Energy, Elsevier, vol. 88(10), pages 3464-3467.
    2. Basha, Syed Ameer & Gopal, K. Raja & Jebaraj, S., 2009. "A review on biodiesel production, combustion, emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1628-1634, August.
    3. Ge, Leilei & Wang, Peng & Mou, Haijin, 2011. "Study on saccharification techniques of seaweed wastes for the transformation of ethanol," Renewable Energy, Elsevier, vol. 36(1), pages 84-89.
    4. Tang, Haiying & Abunasser, Nadia & Garcia, M.E.D. & Chen, Meng & Simon Ng, K.Y. & Salley, Steven O., 2011. "Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel," Applied Energy, Elsevier, vol. 88(10), pages 3324-3330.
    5. He, Jie & Zhang, Wennan, 2011. "Techno-economic evaluation of thermo-chemical biomass-to-ethanol," Applied Energy, Elsevier, vol. 88(4), pages 1224-1232, April.
    6. Balat, Mustafa & Balat, Havva, 2009. "Recent trends in global production and utilization of bio-ethanol fuel," Applied Energy, Elsevier, vol. 86(11), pages 2273-2282, November.
    7. Singh, Jasvinder & Gu, Sai, 2010. "Commercialization potential of microalgae for biofuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2596-2610, December.
    8. Anandarajah, Kandiah & Mahendraperumal, Guruvaiah & Sommerfeld, Milton & Hu, Qiang, 2012. "Characterization of microalga Nannochloropsis sp. mutants for improved production of biofuels," Applied Energy, Elsevier, vol. 96(C), pages 371-377.
    9. Szczęsna Antczak, Mirosława & Kubiak, Aneta & Antczak, Tadeusz & Bielecki, Stanisław, 2009. "Enzymatic biodiesel synthesis – Key factors affecting efficiency of the process," Renewable Energy, Elsevier, vol. 34(5), pages 1185-1194.
    10. Chen, H. & Chen, G.Q., 2011. "Energy cost of rapeseed-based biodiesel as alternative energy in China," Renewable Energy, Elsevier, vol. 36(5), pages 1374-1378.
    11. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    12. Li, Yuesong & Lian, Shuang & Tong, Dongmei & Song, Ruili & Yang, Wenyan & Fan, Yong & Qing, Renwei & Hu, Changwei, 2011. "One-step production of biodiesel from Nannochloropsis sp. on solid base Mg–Zr catalyst," Applied Energy, Elsevier, vol. 88(10), pages 3313-3317.
    13. Maceiras, Rocio & Rodrı´guez, Mónica & Cancela, Angeles & Urréjola, Santiago & Sánchez, Angel, 2011. "Macroalgae: Raw material for biodiesel production," Applied Energy, Elsevier, vol. 88(10), pages 3318-3323.
    14. Gao, Chunfang & Zhai, Yan & Ding, Yi & Wu, Qingyu, 2010. "Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides," Applied Energy, Elsevier, vol. 87(3), pages 756-761, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maity, Jyoti Prakash & Hou, Chia-Peng & Majumder, Dip & Bundschuh, Jochen & Kulp, Thomas R. & Chen, Chien-Yen & Chuang, Lu-Te & Nathan Chen, Ching-Nen & Jean, Jiin-Shuh & Yang, Tsui-Chu & Chen, Chien-, 2014. "The production of biofuel and bioelectricity associated with wastewater treatment by green algae," Energy, Elsevier, vol. 78(C), pages 94-103.
    2. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    3. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    4. Bharathiraja, B. & Chakravarthy, M. & Ranjith Kumar, R. & Yogendran, D. & Yuvaraj, D. & Jayamuthunagai, J. & Praveen Kumar, R. & Palani, S., 2015. "Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 634-653.
    5. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    6. Trivedi, Jayati & Aila, Mounika & Bangwal, D.P. & Kaul, Savita & Garg, M.O., 2015. "Algae based biorefinery—How to make sense?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 295-307.
    7. Demirbas, M. Fatih, 2011. "Biofuels from algae for sustainable development," Applied Energy, Elsevier, vol. 88(10), pages 3473-3480.
    8. Balat, Mustafa & Balat, Havva, 2010. "Progress in biodiesel processing," Applied Energy, Elsevier, vol. 87(6), pages 1815-1835, June.
    9. Marwa G. Saad & Noura S. Dosoky & Mohamed S. Zoromba & Hesham M. Shafik, 2019. "Algal Biofuels: Current Status and Key Challenges," Energies, MDPI, vol. 12(10), pages 1-22, May.
    10. Suali, Emma & Sarbatly, Rosalam, 2012. "Conversion of microalgae to biofuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4316-4342.
    11. Maity, Jyoti Prakash & Bundschuh, Jochen & Chen, Chien-Yen & Bhattacharya, Prosun, 2014. "Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives – A mini review," Energy, Elsevier, vol. 78(C), pages 104-113.
    12. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    13. Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.
    14. Jin, Wenxiang & Chen, Ling & Hu, Meng & Sun, Dan & Li, Ao & Li, Ying & Hu, Zhen & Zhou, Shiguang & Tu, Yuanyuan & Xia, Tao & Wang, Yanting & Xie, Guosheng & Li, Yanbin & Bai, Baowei & Peng, Liangcai, 2016. "Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed," Applied Energy, Elsevier, vol. 175(C), pages 82-90.
    15. Xu, Yang-Jie & Li, Guo-Xiu & Sun, Zuo-Yu, 2016. "Development of biodiesel industry in China: Upon the terms of production and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 318-330.
    16. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    17. Neto, Ana Maria Pereira & Sotana de Souza, Rafael Augusto & Leon-Nino, Amanda Denisse & da Costa, Joana D'arc Aparecida & Tiburcio, Rodolfo Sbrolini & Nunes, Thaís Abreu & Sellare de Mello, Thaís Cris, 2013. "Improvement in microalgae lipid extraction using a sonication-assisted method," Renewable Energy, Elsevier, vol. 55(C), pages 525-531.
    18. Demirbas, Ayhan, 2011. "Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems," Applied Energy, Elsevier, vol. 88(10), pages 3541-3547.
    19. Farrelly, Damien J. & Everard, Colm D. & Fagan, Colette C. & McDonnell, Kevin P., 2013. "Carbon sequestration and the role of biological carbon mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 712-727.
    20. El Arroussi, Hicham & Benhima, Redouane & Bennis, Iman & El Mernissi, Najib & Wahby, Imane, 2015. "Improvement of the potential of Dunaliella tertiolecta as a source of biodiesel by auxin treatment coupled to salt stress," Renewable Energy, Elsevier, vol. 77(C), pages 15-19.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:102:y:2013:i:c:p:1371-1381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.