IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics036054422302501x.html
   My bibliography  Save this article

Hydroprocessing of lipids: An effective production process for sustainable aviation fuel

Author

Listed:
  • Song, Miaojia
  • Zhang, Xinghua
  • Chen, Yubao
  • Zhang, Qi
  • Chen, Lungang
  • Liu, Jianguo
  • Ma, Longlong

Abstract

Renewable lipids can be converted into jet fuel-range alkanes via catalytic hydrotreatment, and many researches have been conducted over the past few decades. Relevant specification for Hydroprocessed Esters and Fatty Acids Synthetic Paraffinic Kerosene (HEFA-SPK) has been approved by American Society of Testing Materials (ASTM), and lipids-derived aviation fuel has been used in the commercial flights because of its obvious advantages in the reduction of carbon dioxide emissions. This paper introduces production processes for sustainable aviation fuels by hydroprocessing of lipids. First, the properties of lipids and their pretreatment methods are introduced. Hydrotreating catalysts, including supported single/bimetallic catalysts, metal sulfide catalysts, metal oxide catalysts, metal carbide and nitride catalysts, are introduced by category, and their catalytic mechanism in the hydroprocessing of lipids is discussed. In addition, several major commercial production technologies and techno-economic evaluations for the production of bio-aviation fuel from lipids are introduced. Finally, major challenges and promising prospects are also pointed out for the future development of conversion of lipids to aviation fuels.

Suggested Citation

  • Song, Miaojia & Zhang, Xinghua & Chen, Yubao & Zhang, Qi & Chen, Lungang & Liu, Jianguo & Ma, Longlong, 2023. "Hydroprocessing of lipids: An effective production process for sustainable aviation fuel," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s036054422302501x
    DOI: 10.1016/j.energy.2023.129107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422302501X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gutiérrez-Antonio, C. & Gómez-Castro, F.I. & de Lira-Flores, J.A. & Hernández, S., 2017. "A review on the production processes of renewable jet fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 709-729.
    2. Dujjanutat, Praepilas & Kaewkannetra, Pakawadee, 2020. "Production of bio-hydrogenated kerosene by catalytic hydrocracking from refined bleached deodorised palm/ palm kernel oils," Renewable Energy, Elsevier, vol. 147(P1), pages 464-472.
    3. Fortier, Marie-Odile P. & Roberts, Griffin W. & Stagg-Williams, Susan M. & Sturm, Belinda S.M., 2014. "Life cycle assessment of bio-jet fuel from hydrothermal liquefaction of microalgae," Applied Energy, Elsevier, vol. 122(C), pages 73-82.
    4. Kandaramath Hari, Thushara & Yaakob, Zahira & Binitha, Narayanan N., 2015. "Aviation biofuel from renewable resources: Routes, opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1234-1244.
    5. Jakub Frątczak & Nikita Sharkov & Hector De Paz Carmona & Zdeněk Tišler & Jose M. Hidalgo-Herrador, 2021. "Cleaner Fuel Production via Co-Processing of Vacuum Gas Oil with Rapeseed Oil Using a Novel NiW/Acid-Modified Phonolite Catalyst," Energies, MDPI, vol. 14(24), pages 1-13, December.
    6. Li, Yuping & Zhao, Cong & Chen, Lungang & Zhang, Xinghua & Zhang, Qi & Wang, Tiejun & Qiu, Songbai & Tan, Jin & Li, Kai & Wang, Chenguang & Ma, Longlong, 2018. "Production of bio-jet fuel from corncob by hydrothermal decomposition and catalytic hydrogenation: Lab analysis of process and techno-economics of a pilot-scale facility," Applied Energy, Elsevier, vol. 227(C), pages 128-136.
    7. Liu, Guangrui & Yan, Beibei & Chen, Guanyi, 2013. "Technical review on jet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 59-70.
    8. Chen, Yu-Kai & Hsieh, Chung-Hung & Wang, Wei-Cheng, 2020. "The production of renewable aviation fuel from waste cooking oil. Part II: Catalytic hydro-cracking/isomerization of hydro-processed alkanes into jet fuel range products," Renewable Energy, Elsevier, vol. 157(C), pages 731-740.
    9. Why, Elaine Siew Kuan & Ong, Hwai Chyuan & Lee, Hwei Voon & Chen, Wei-Hsin & Asikin-Mijan, N. & Varman, Mahendra & Loh, Wen Jing, 2022. "Single-step catalytic deoxygenation of palm feedstocks for the production of sustainable bio-jet fuel," Energy, Elsevier, vol. 239(PB).
    10. Eswaran, Sudha & Subramaniam, Senthil & Geleynse, Scott & Brandt, Kristin & Wolcott, Michael & Zhang, Xiao, 2021. "Techno-economic analysis of catalytic hydrothermolysis pathway for jet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    11. Jiankang Zhang & Zhe Gao & Sen Wang & Guofu Wang & Xiaofeng Gao & Baiyan Zhang & Shuangfeng Xing & Shichao Zhao & Yong Qin, 2019. "Origin of synergistic effects in bicomponent cobalt oxide-platinum catalysts for selective hydrogenation reaction," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    12. Li, Xingyong & Chen, Yubao & Hao, Yajie & Zhang, Xu & Du, Junchen & Zhang, Aimin, 2019. "Optimization of aviation kerosene from one-step hydrotreatment of catalytic Jatropha oil over SDBS-Pt/SAPO-11 by response surface methodology," Renewable Energy, Elsevier, vol. 139(C), pages 551-559.
    13. Lin, Cheng-Han & Wang, Wei-Cheng, 2020. "Direct conversion of glyceride-based oil into renewable jet fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    14. Ng, Kok Siew & Farooq, Danial & Yang, Aidong, 2021. "Global biorenewable development strategies for sustainable aviation fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    15. Mousavi-Avval, Seyed Hashem & Shah, Ajay, 2021. "Techno-economic analysis of hydroprocessed renewable jet fuel production from pennycress oilseed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    16. Shahinuzzaman, M. & Yaakob, Zahira & Ahmed, Yunus, 2017. "Non-sulphide zeolite catalyst for bio-jet-fuel conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1375-1384.
    17. Tekin, Kubilay & Karagöz, Selhan & Bektaş, Sema, 2014. "A review of hydrothermal biomass processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 673-687.
    18. Zabed, H. & Sahu, J.N. & Suely, A. & Boyce, A.N. & Faruq, G., 2017. "Bioethanol production from renewable sources: Current perspectives and technological progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 475-501.
    19. Klein, Bruno Colling & Chagas, Mateus Ferreira & Junqueira, Tassia Lopes & Rezende, Mylene Cristina Alves Ferreira & Cardoso, Terezinha de Fátima & Cavalett, Otavio & Bonomi, Antonio, 2018. "Techno-economic and environmental assessment of renewable jet fuel production in integrated Brazilian sugarcane biorefineries," Applied Energy, Elsevier, vol. 209(C), pages 290-305.
    20. Adewale, Peter & Dumont, Marie-Josée & Ngadi, Michael, 2015. "Recent trends of biodiesel production from animal fat wastes and associated production techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 574-588.
    21. Shila, Jacob & Johnson, Mary E., 2021. "Techno-economic analysis of Camelina-derived hydroprocessed renewable jet fuel within the US context," Applied Energy, Elsevier, vol. 287(C).
    22. Rong, Siteng & Tan, Hongzi & Pang, Zhaobin & Zong, Zhiyuan & Zhao, Rongrong & Li, Zhihe & Chen, Zhe-Ning & Zhang, Ning-Ning & Yi, Weiming & Cui, Hongyou, 2022. "Synergetic effect between Pd clusters and oxygen vacancies in hierarchical Nb2O5 for lignin-derived phenol hydrodeoxygenation into benzene," Renewable Energy, Elsevier, vol. 187(C), pages 271-281.
    23. Li, Xin & Luo, Xingyi & Jin, Yangbin & Li, Jinyan & Zhang, Hongdan & Zhang, Aiping & Xie, Jun, 2018. "Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable bio-oils to second generation biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3762-3797.
    24. Zhang, Chi & Hui, Xin & Lin, Yuzhen & Sung, Chih-Jen, 2016. "Recent development in studies of alternative jet fuel combustion: Progress, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 120-138.
    25. Wang, Wei-Cheng & Tao, Ling, 2016. "Bio-jet fuel conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 801-822.
    26. Rafieenia, Razieh & Pivato, Alberto & Lavagnolo, Maria Cristina, 2019. "Optimization of hydrogen production from food waste using anaerobic mixed cultures pretreated with waste frying oil," Renewable Energy, Elsevier, vol. 139(C), pages 1077-1085.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xing, Shiyou & Fu, Junying & Li, Ming & Yang, Gaixiu & Lv, Pengmei, 2024. "Emerging catalysis in solvent-free hydrodeoxygenation of waste lipids under mild conditions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    2. Tymchyshyn, Matthew & Niu, Chunyao & Rezayan, Armin & Zhang, Yongsheng & Xu, Chunbao, 2024. "Transformation of organosolv lignin into sustainable aromatics: Catalytic hydrodeoxygenation using carbon-supported bimetallic MoRu catalyst," Energy, Elsevier, vol. 304(C).
    3. Luo, Qiaodan & Zhao, Shengfeng & Zhou, Shiji & Yao, Lipan & Yang, Chengwu & Lu, Xingen & Zhu, Junqiang, 2024. "Influence of diversified dihedral stator on the thermodynamic performance and flow loss characteristics of a variable core driven fan stage," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alherbawi, Mohammad & McKay, Gordon & Mackey, Hamish R. & Al-Ansari, Tareq, 2021. "Jatropha curcas for jet biofuel production: Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Ahmad, Salman & Ouenniche, Jamal & Kolosz, Ben W. & Greening, Philip & Andresen, John M. & Maroto-Valer, M. Mercedes & Xu, Bing, 2021. "A stakeholders’ participatory approach to multi-criteria assessment of sustainable aviation fuels production pathways," International Journal of Production Economics, Elsevier, vol. 238(C).
    3. Wang, Hongliang & Yang, Bin & Zhang, Qian & Zhu, Wanbin, 2020. "Catalytic routes for the conversion of lignocellulosic biomass to aviation fuel range hydrocarbons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    4. Lim, Jackson Hwa Keen & Gan, Yong Yang & Ong, Hwai Chyuan & Lau, Beng Fye & Chen, Wei-Hsin & Chong, Cheng Tung & Ling, Tau Chuan & Klemeš, Jiří Jaromír, 2021. "Utilization of microalgae for bio-jet fuel production in the aviation sector: Challenges and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Yilmaz, Nadir & Atmanli, Alpaslan, 2017. "Sustainable alternative fuels in aviation," Energy, Elsevier, vol. 140(P2), pages 1378-1386.
    6. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Seyed Hashem Mousavi-Avval & Sami Khanal & Ajay Shah, 2023. "Assessment of Potential Pennycress Availability and Suitable Sites for Sustainable Aviation Fuel Refineries in Ohio," Sustainability, MDPI, vol. 15(13), pages 1-14, July.
    8. Gunerhan, Ali & Altuntas, Onder & Caliskan, Hakan, 2023. "Utilization of renewable and sustainable aviation biofuels from waste tyres for sustainable aviation transport sector," Energy, Elsevier, vol. 276(C).
    9. Long, Feng & Liu, Weiguo & Jiang, Xia & Zhai, Qiaolong & Cao, Xincheng & Jiang, Jianchun & Xu, Junming, 2021. "State-of-the-art technologies for biofuel production from triglycerides: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    10. Verma, Vikas & Mishra, Ankit & Anand, Mohit & Farooqui, Saleem Akhtar & Sinha, Anil Kumar, 2022. "Catalytic hydrocracking of inedible palm stearin for the production of drop-in aviation fuel and comparison with other inedible oils," Renewable Energy, Elsevier, vol. 199(C), pages 1440-1450.
    11. Lin, Cheng-Han & Wang, Wei-Cheng, 2020. "Direct conversion of glyceride-based oil into renewable jet fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    12. Shahinuzzaman, M. & Yaakob, Zahira & Ahmed, Yunus, 2017. "Non-sulphide zeolite catalyst for bio-jet-fuel conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1375-1384.
    13. Mousavi-Avval, Seyed Hashem & Shah, Ajay, 2021. "Techno-economic analysis of hydroprocessed renewable jet fuel production from pennycress oilseed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    14. Gutiérrez-Antonio, C. & Gómez-Castro, F.I. & de Lira-Flores, J.A. & Hernández, S., 2017. "A review on the production processes of renewable jet fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 709-729.
    15. Escalante, Edwin Santiago Rios & Ramos, Luth Silva & Rodriguez Coronado, Christian J. & de Carvalho Júnior, João Andrade, 2022. "Evaluation of the potential feedstock for biojet fuel production: Focus in the Brazilian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    16. Emmanouilidou, Elissavet & Mitkidou, Sophia & Agapiou, Agapios & Kokkinos, Nikolaos C., 2023. "Solid waste biomass as a potential feedstock for producing sustainable aviation fuel: A systematic review," Renewable Energy, Elsevier, vol. 206(C), pages 897-907.
    17. Braun, Matthias & Grimme, Wolfgang & Oesingmann, Katrin, 2024. "Pathway to net zero: Reviewing sustainable aviation fuels, environmental impacts and pricing," Journal of Air Transport Management, Elsevier, vol. 117(C).
    18. Mousavi-Avval, Seyed Hashem & Shah, Ajay, 2021. "Life cycle energy and environmental impacts of hydroprocessed renewable jet fuel production from pennycress," Applied Energy, Elsevier, vol. 297(C).
    19. Wang, Wei-Cheng & Liu, Yu-Cheng & Nugroho, Rusdan Aditya Aji, 2022. "Techno-economic analysis of renewable jet fuel production: The comparison between Fischer-Tropsch synthesis and pyrolysis," Energy, Elsevier, vol. 239(PA).
    20. Li, Yuping & Zhao, Cong & Chen, Lungang & Zhang, Xinghua & Zhang, Qi & Wang, Tiejun & Qiu, Songbai & Tan, Jin & Li, Kai & Wang, Chenguang & Ma, Longlong, 2018. "Production of bio-jet fuel from corncob by hydrothermal decomposition and catalytic hydrogenation: Lab analysis of process and techno-economics of a pilot-scale facility," Applied Energy, Elsevier, vol. 227(C), pages 128-136.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s036054422302501x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.