IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v219y2023ip2s0960148123014751.html
   My bibliography  Save this article

Synthesis of Ni/Clinoptilolite catalyst by modified polyol method for upgrading of bio-oil produced from hazelnut husk pyrolysis

Author

Listed:
  • Bayrakdar Ates, Ezgi

Abstract

Bio-oil obtained by pyrolysis of biomass contains high amounts of oxygenated compounds as a result its physicochemical properties may give rise to certain challenges. Zeolite-based catalysts, such as clinoptilolite, have the ability to convert oxygenated compounds into less oxygenated compounds.10%Ni/Clinoptilolite catalyst was synthesized by modified polyol method as an alternative to known methods instead of common catalysts to improve bio-oil quality. Catalyzed/uncatalyzed pyrolysis of hazelnut husk (HH) was conducted for two distinct retention times (15 s and 25 s) and two catalyst/biomass ratios (1:1 and 2:1) to determine the effect of the catalyst. The optimal catalyst/biomass ratio for obtaining the highest aromatic hydrocarbon content was found to be two, whereas the highest aliphatic hydrocarbon content was observed at a ratio of one. An increase in retention time from 15 s to 25 s was found to have a positive impact on the composition of bio-oil, whereas it decreased the aromatic hydrocarbon content only when the ratio of catalyst to biomass was two.

Suggested Citation

  • Bayrakdar Ates, Ezgi, 2023. "Synthesis of Ni/Clinoptilolite catalyst by modified polyol method for upgrading of bio-oil produced from hazelnut husk pyrolysis," Renewable Energy, Elsevier, vol. 219(P2).
  • Handle: RePEc:eee:renene:v:219:y:2023:i:p2:s0960148123014751
    DOI: 10.1016/j.renene.2023.119560
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123014751
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119560?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balasundram, Vekes & Ibrahim, Norazana & Kasmani, Rafiziana Md. & Isha, Ruzinah & Hamid, Mohd. Kamaruddin Abd. & Hasbullah, Hasrinah & Ali, Roshafima Rasit, 2018. "Catalytic upgrading of sugarcane bagasse pyrolysis vapours over rare earth metal (Ce) loaded HZSM-5: Effect of catalyst to biomass ratio on the organic compounds in pyrolysis oil," Applied Energy, Elsevier, vol. 220(C), pages 787-799.
    2. Wang, Jicong & Bi, Peiyan & Zhang, Yajing & Xue, He & Jiang, Peiwen & Wu, Xiaoping & Liu, Junxu & Wang, Tiejun & Li, Quanxin, 2015. "Preparation of jet fuel range hydrocarbons by catalytic transformation of bio-oil derived from fast pyrolysis of straw stalk," Energy, Elsevier, vol. 86(C), pages 488-499.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yu-Kai & Lin, Cheng-Han & Wang, Wei-Cheng, 2020. "The conversion of biomass into renewable jet fuel," Energy, Elsevier, vol. 201(C).
    2. Shahinuzzaman, M. & Yaakob, Zahira & Ahmed, Yunus, 2017. "Non-sulphide zeolite catalyst for bio-jet-fuel conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1375-1384.
    3. Bhoi, P.R. & Ouedraogo, A.S. & Soloiu, V. & Quirino, R., 2020. "Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    4. Araújo, Aruzza Mabel de Morais & Lima, Regineide de Oliveira & Gondim, Amanda Duarte & Diniz, Juraci & Souza, Luiz Di & Araujo, Antonio Souza de, 2017. "Thermal and catalytic pyrolysis of sunflower oil using AlMCM-41," Renewable Energy, Elsevier, vol. 101(C), pages 900-906.
    5. Gutiérrez-Antonio, C. & Gómez-Castro, F.I. & de Lira-Flores, J.A. & Hernández, S., 2017. "A review on the production processes of renewable jet fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 709-729.
    6. Ming, Zi-Qiang & Liu, Yun-Quan & Ye, Yue-Yuan & Li, Shui-Rong & Zhao, Ying-Ru & Wang, Duo, 2016. "Study of a new combined method for pre-extraction of essential oils and catalytic fast pyrolysis of pine sawdust," Energy, Elsevier, vol. 116(P1), pages 558-566.
    7. Hassan, H. & Hameed, B.H. & Lim, J.K., 2020. "Co-pyrolysis of sugarcane bagasse and waste high-density polyethylene: Synergistic effect and product distributions," Energy, Elsevier, vol. 191(C).
    8. Zhang, Xiaowen & Liu, Helei & Liang, Zhiwu & Idem, Raphael & Tontiwachwuthikul, Paitoon & Jaber Al-Marri, Mohammed & Benamor, Abdelbaki, 2018. "Reducing energy consumption of CO2 desorption in CO2-loaded aqueous amine solution using Al2O3/HZSM-5 bifunctional catalysts," Applied Energy, Elsevier, vol. 229(C), pages 562-576.
    9. Why, Elaine Siew Kuan & Ong, Hwai Chyuan & Lee, Hwei Voon & Chen, Wei-Hsin & Asikin-Mijan, N. & Varman, Mahendra & Loh, Wen Jing, 2022. "Single-step catalytic deoxygenation of palm feedstocks for the production of sustainable bio-jet fuel," Energy, Elsevier, vol. 239(PB).
    10. Kroyan, Yuri & Wojcieszyk, Michał & Kaario, Ossi & Larmi, Martti, 2022. "Modeling the impact of sustainable aviation fuel properties on end-use performance and emissions in aircraft jet engines," Energy, Elsevier, vol. 255(C).
    11. Caio Campos Ferreira & Lucas Pinto Bernar & Augusto Fernando de Freitas Costa & Haroldo Jorge da Silva Ribeiro & Marcelo Costa Santos & Nathalia Lobato Moraes & Yasmin Santos Costa & Ana Cláudia Fonse, 2022. "Improving Fuel Properties and Hydrocarbon Content from Residual Fat Pyrolysis Vapors over Activated Red Mud Pellets in Two-Stage Reactor: Optimization of Reaction Time and Catalyst Content," Energies, MDPI, vol. 15(15), pages 1-33, August.
    12. Li, Zhixia & Huang, Zhentao & Ding, Shilei & Li, Fuwei & Wang, Zhaohe & Lin, Hongfei & Chen, Congjin, 2018. "Catalytic conversion of waste cooking oil to fuel oil: Catalyst design and effect of solvent," Energy, Elsevier, vol. 157(C), pages 270-277.
    13. Zhang, Rui & He, Yuting & Luo, Yuehui & Lou, DanFeng & Zhu, Rui & Zhu, Can & Li, Quanxin, 2023. "Selective preparation of jet fuels from low carbon alcohols and ABE at atmospheric pressure," Energy, Elsevier, vol. 281(C).
    14. Hansen, Samuel & Mirkouei, Amin & Diaz, Luis A., 2020. "A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    15. Liborio, Denisson O. & Arias, Santiago & Mumbach, Guilherme D. & Alves, José Luiz F. & da Silva, Jean C.G. & Silva, Jose Marcos F. & Frety, Roger & Pacheco, Jose Geraldo A., 2024. "Evaluating black wattle bark industrial residue as a new feedstock for bioenergy via pyrolysis and multicomponent kinetic modeling," Renewable Energy, Elsevier, vol. 228(C).
    16. Ong, Hwai Chyuan & Chen, Wei-Hsin & Farooq, Abid & Gan, Yong Yang & Lee, Keat Teong & Ashokkumar, Veeramuthu, 2019. "Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    17. Shamsul, N.S. & Kamarudin, S.K. & Rahman, N.A., 2017. "Conversion of bio-oil to bio gasoline via pyrolysis and hydrothermal: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 538-549.
    18. Duan, Dengle & Zhang, Yayun & Wang, Yunpu & Lei, Hanwu & Wang, Qin & Ruan, Roger, 2020. "Production of renewable jet fuel and gasoline range hydrocarbons from catalytic pyrolysis of soapstock over corn cob-derived activated carbons," Energy, Elsevier, vol. 209(C).
    19. Xing, Shiyou & Yuan, Haoran & Huhetaoli, & Qi, Yujie & Lv, Pengmei & Yuan, Zhenhong & Chen, Yong, 2016. "Characterization of the decomposition behaviors of catalytic pyrolysis of wood using copper and potassium over thermogravimetric and Py-GC/MS analysis," Energy, Elsevier, vol. 114(C), pages 634-646.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:219:y:2023:i:p2:s0960148123014751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.