IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v58y2013icp66-77.html
   My bibliography  Save this article

Comparison study on different SOFC hybrid systems with zero-CO2 emission

Author

Listed:
  • Duan, Liqiang
  • Huang, Kexin
  • Zhang, Xiaoyuan
  • Yang, Yongping

Abstract

Based on a traditional SOFC (solid oxide fuel cell) hybrid power system, three different SOFC hybrid power systems with zero-CO2 emission are proposed in this paper and their performances are analyzed and compared. The anode outlet gas of SOFC burns with the pure oxygen and the concentration of CO2 is greatly increased. In order to maintain the appropriate turbine inlet temperature, three different measures (steam injection, CO2 gas injection and heat exchange layout) are taken. Because the outlet flue gas of the afterburner mainly consists of CO2 and steam, the CO2 in the flue gas can be captured easily by the condensation method after the recovery of work and heat. With the exergy analysis method, this paper studies the exergy loss distributions of every unit of SOFC hybrid systems with CO2 capture and reveals the variation rules of exergy loss distributions. The effects of the main operating parameters on the overall performances of SOFC hybrid systems with CO2 capture are also investigated. The results show that the zero CO2 emission SOFC hybrid systems still have higher efficiencies, which only decrease about 3–4% compared with that of the basic SOFC hybrid system without CO2 capture.

Suggested Citation

  • Duan, Liqiang & Huang, Kexin & Zhang, Xiaoyuan & Yang, Yongping, 2013. "Comparison study on different SOFC hybrid systems with zero-CO2 emission," Energy, Elsevier, vol. 58(C), pages 66-77.
  • Handle: RePEc:eee:energy:v:58:y:2013:i:c:p:66-77
    DOI: 10.1016/j.energy.2013.04.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213003782
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.04.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bang-Møller, C. & Rokni, M. & Elmegaard, B., 2011. "Exergy analysis and optimization of a biomass gasification, solid oxide fuel cell and micro gas turbine hybrid system," Energy, Elsevier, vol. 36(8), pages 4740-4752.
    2. Dijkstra, J.W & Jansen, D, 2004. "Novel concepts for CO2 capture," Energy, Elsevier, vol. 29(9), pages 1249-1257.
    3. Hammond, G.P. & Akwe, S.S. Ondo & Williams, S., 2011. "Techno-economic appraisal of fossil-fuelled power generation systems with carbon dioxide capture and storage," Energy, Elsevier, vol. 36(2), pages 975-984.
    4. Calise, F. & Dentice d’Accadia, M. & Palombo, A. & Vanoli, L., 2006. "Simulation and exergy analysis of a hybrid Solid Oxide Fuel Cell (SOFC)–Gas Turbine System," Energy, Elsevier, vol. 31(15), pages 3278-3299.
    5. Franzoni, A. & Magistri, L. & Traverso, A. & Massardo, A.F., 2008. "Thermoeconomic analysis of pressurized hybrid SOFC systems with CO2 separation," Energy, Elsevier, vol. 33(2), pages 311-320.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Detchusananard, Thanaphorn & Im-orb, Karittha & Maréchal, François & Arpornwichanop, Amornchai, 2020. "Analysis of the sorption-enhanced chemical looping biomass gasification process: Performance assessment and optimization through design of experiment approach," Energy, Elsevier, vol. 207(C).
    2. Cheng, Tianliang & Jiang, Jianhua & Wu, Xiaodong & Li, Xi & Xu, Mengxue & Deng, Zhonghua & Li, Jian, 2019. "Application oriented multiple-objective optimization, analysis and comparison of solid oxide fuel cell systems with different configurations," Applied Energy, Elsevier, vol. 235(C), pages 914-929.
    3. Bakalis, Diamantis P. & Stamatis, Anastassios G., 2014. "Optimization methodology of turbomachines for hybrid SOFC–GT applications," Energy, Elsevier, vol. 70(C), pages 86-94.
    4. Moradi, Mehrdad & Mehrpooya, Mehdi, 2017. "Optimal design and economic analysis of a hybrid solid oxide fuel cell and parabolic solar dish collector, combined cooling, heating and power (CCHP) system used for a large commercial tower," Energy, Elsevier, vol. 130(C), pages 530-543.
    5. Wang, Fu & Deng, Shuai & Zhang, Houcheng & Wang, Jiatang & Zhao, Jiapei & Miao, He & Yuan, Jinliang & Yan, Jinyue, 2020. "A comprehensive review on high-temperature fuel cells with carbon capture," Applied Energy, Elsevier, vol. 275(C).
    6. Barelli, L. & Ottaviano, A., 2014. "Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions," Energy, Elsevier, vol. 71(C), pages 118-129.
    7. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Xiaomeng & Wang, Qiushi & Liu, Luyao, 2023. "Multi-criteria performance analysis and optimization of a solar-driven CCHP system based on PEMWE, SOFC, TES, and novel PVT for hotel and office buildings," Renewable Energy, Elsevier, vol. 206(C), pages 1249-1264.
    8. Stéven Pirou & Belma Talic & Karen Brodersen & Anne Hauch & Henrik Lund Frandsen & Theis Løye Skafte & Åsa H. Persson & Jens V. T. Høgh & Henrik Henriksen & Maria Navasa & Xing-Yuan Miao & Xanthi Geor, 2022. "Production of a monolithic fuel cell stack with high power density," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Song, Chunfeng & Kitamura, Yutaka & Li, Shuhong, 2014. "Energy analysis of the cryogenic CO2 capture process based on Stirling coolers," Energy, Elsevier, vol. 65(C), pages 580-589.
    10. Ferrari, Mario L., 2015. "Advanced control approach for hybrid systems based on solid oxide fuel cells," Applied Energy, Elsevier, vol. 145(C), pages 364-373.
    11. Chen, Jinwei & Chen, Yao & Zhang, Huisheng & Weng, Shilie, 2018. "Effect of different operating strategies for a SOFC-GT hybrid system equipped with anode and cathode ejectors," Energy, Elsevier, vol. 163(C), pages 1-14.
    12. Yan, Dong & Liang, Lingjiang & Yang, Jiajun & Zhang, Tao & Pu, Jian & Chi, Bo & Li, Jian, 2017. "Performance degradation and analysis of 10-cell anode-supported SOFC stack with external manifold structure," Energy, Elsevier, vol. 125(C), pages 663-670.
    13. Duan, Liqiang & Lu, Hao & Yuan, Mingye & Lv, Zhipeng, 2018. "Optimization and part-load performance analysis of MCFC/ST hybrid power system," Energy, Elsevier, vol. 152(C), pages 682-693.
    14. Badur, Janusz & Lemański, Marcin & Kowalczyk, Tomasz & Ziółkowski, Paweł & Kornet, Sebastian, 2018. "Zero-dimensional robust model of an SOFC with internal reforming for hybrid energy cycles," Energy, Elsevier, vol. 158(C), pages 128-138.
    15. Eom, Seongyong & Ahn, Seongyool & Rhie, Younghoon & Kang, Kijoong & Sung, Yonmo & Moon, Cheoreon & Choi, Gyungmin & Kim, Duckjool, 2014. "Influence of devolatilized gases composition from raw coal fuel in the lab scale DCFC (direct carbon fuel cell) system," Energy, Elsevier, vol. 74(C), pages 734-740.
    16. Sun, Shaodong & Guo, Xuanhua & Zhang, Huiyu & Li, Yanan & He, Zhilong & Li, Chengxin, 2024. "Design and sensitivity analysis of a multistage solid oxide fuel cell hybrid system with an inter-cooled-recuperated gas turbine and organic Rankine cycle," Energy, Elsevier, vol. 286(C).
    17. Buonomano, Annamaria & Calise, Francesco & d’Accadia, Massimo Dentice & Palombo, Adolfo & Vicidomini, Maria, 2015. "Hybrid solid oxide fuel cells–gas turbine systems for combined heat and power: A review," Applied Energy, Elsevier, vol. 156(C), pages 32-85.
    18. Khani, Leyla & Mahmoudi, S. Mohammad S. & Chitsaz, Ata & Rosen, Marc A., 2016. "Energy and exergoeconomic evaluation of a new power/cooling cogeneration system based on a solid oxide fuel cell," Energy, Elsevier, vol. 94(C), pages 64-77.
    19. Mounir, Hamid & Belaiche, Mohamed & El Marjani, Abdellatif & El Gharad, Abdellah, 2014. "Thermal stress and probability of survival investigation in a multi-bundle integrated-planar solid oxide fuel cells IP-SOFC (integrated-planar solid oxide fuel cell)," Energy, Elsevier, vol. 66(C), pages 378-386.
    20. Choudhary, Tushar & Sanjay,, 2017. "Thermodynamic assessment of SOFC-ICGT hybrid cycle: Energy analysis and entropy generation minimization," Energy, Elsevier, vol. 134(C), pages 1013-1028.
    21. Duan, Liqiang & Sun, Siyu & Yue, Long & Qu, Wanjun & Yang, Yongping, 2015. "Study on a new IGCC (Integrated Gasification Combined Cycle) system with CO2 capture by integrating MCFC (Molten Carbonate Fuel Cell)," Energy, Elsevier, vol. 87(C), pages 490-503.
    22. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Qiushi & Bischi, Aldo & Desideri, Umberto, 2023. "Techno-economic analysis of a novel solar-driven PEMEC-SOFC-based multi-generation system coupled parabolic trough photovoltaic thermal collector and thermal energy storage," Applied Energy, Elsevier, vol. 331(C).
    23. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Qiushi, 2023. "Comprehensive sustainability assessment of a novel solar-driven PEMEC-SOFC-based combined cooling, heating, power, and storage (CCHPS) system based on life cycle method," Energy, Elsevier, vol. 265(C).
    24. Duan, Liqiang & Yue, Long & Feng, Tao & Lu, Hao & Bian, Jing, 2016. "Study on a novel pressurized MCFC hybrid system with CO2 capture," Energy, Elsevier, vol. 109(C), pages 737-750.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azizi, Mohammad Ali & Brouwer, Jacob, 2018. "Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis, transient operation, controls and optimization," Applied Energy, Elsevier, vol. 215(C), pages 237-289.
    2. Denver F. Cheddie, 2010. "Integration of A Solid Oxide Fuel Cell into A 10 MW Gas Turbine Power Plant," Energies, MDPI, vol. 3(4), pages 1-16, April.
    3. Tan, Luzhi & Dong, Xiaoming & Gong, Zhiqiang & Wang, Mingtao, 2017. "Investigation on performance of an integrated SOFC-GE-KC power generation system using gaseous fuel from biomass gasification," Renewable Energy, Elsevier, vol. 107(C), pages 448-461.
    4. Santhanam, S. & Schilt, C. & Turker, B. & Woudstra, T. & Aravind, P.V., 2016. "Thermodynamic modeling and evaluation of high efficiency heat pipe integrated biomass Gasifier–Solid Oxide Fuel Cells–Gas Turbine systems," Energy, Elsevier, vol. 109(C), pages 751-764.
    5. Khani, Leyla & Mahmoudi, S. Mohammad S. & Chitsaz, Ata & Rosen, Marc A., 2016. "Energy and exergoeconomic evaluation of a new power/cooling cogeneration system based on a solid oxide fuel cell," Energy, Elsevier, vol. 94(C), pages 64-77.
    6. Gandiglio, M. & Lanzini, A. & Leone, P. & Santarelli, M. & Borchiellini, R., 2013. "Thermoeconomic analysis of large solid oxide fuel cell plants: Atmospheric vs. pressurized performance," Energy, Elsevier, vol. 55(C), pages 142-155.
    7. Rokni, Masoud, 2013. "Thermodynamic analysis of SOFC (solid oxide fuel cell)–Stirling hybrid plants using alternative fuels," Energy, Elsevier, vol. 61(C), pages 87-97.
    8. Choudhury, Arnab & Chandra, H. & Arora, A., 2013. "Application of solid oxide fuel cell technology for power generation—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 430-442.
    9. Wee, Jung-Ho, 2010. "Contribution of fuel cell systems to CO2 emission reduction in their application fields," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 735-744, February.
    10. Facchinetti, Emanuele & Gassner, Martin & D’Amelio, Matilde & Marechal, François & Favrat, Daniel, 2012. "Process integration and optimization of a solid oxide fuel cell – Gas turbine hybrid cycle fueled with hydrothermally gasified waste biomass," Energy, Elsevier, vol. 41(1), pages 408-419.
    11. Doherty, Wayne & Reynolds, Anthony & Kennedy, David, 2010. "Computer simulation of a biomass gasification-solid oxide fuel cell power system using Aspen Plus," Energy, Elsevier, vol. 35(12), pages 4545-4555.
    12. Prabu, V. & Jayanti, S., 2012. "Underground coal-air gasification based solid oxide fuel cell system," Applied Energy, Elsevier, vol. 94(C), pages 406-414.
    13. Olateju, Babatunde & Kumar, Amit, 2013. "Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands," Applied Energy, Elsevier, vol. 111(C), pages 428-440.
    14. Barelli, L. & Ottaviano, A., 2014. "Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions," Energy, Elsevier, vol. 71(C), pages 118-129.
    15. Peng, Benhong & Zhao, Yinyin & Elahi, Ehsan & Wan, Anxia, 2023. "Can third-party market cooperation solve the dilemma of emissions reduction? A case study of energy investment project conflict analysis in the context of carbon neutrality," Energy, Elsevier, vol. 264(C).
    16. Entchev, E. & Yang, L. & Ghorab, M. & Lee, E.J., 2013. "Simulation of hybrid renewable microgeneration systems in load sharing applications," Energy, Elsevier, vol. 50(C), pages 252-261.
    17. Silveira, Jose Luz & Lamas, Wendell de Queiroz & Tuna, Celso Eduardo & Villela, Iraides Aparecida de Castro & Miro, Laura Siso, 2012. "Ecological efficiency and thermoeconomic analysis of a cogeneration system at a hospital," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2894-2906.
    18. Rokni, Masoud, 2014. "Biomass gasification integrated with a solid oxide fuel cell and Stirling engine," Energy, Elsevier, vol. 77(C), pages 6-18.
    19. Nemet, Gregory F. & Baker, Erin & Jenni, Karen E., 2013. "Modeling the future costs of carbon capture using experts' elicited probabilities under policy scenarios," Energy, Elsevier, vol. 56(C), pages 218-228.
    20. Ding, Xiaoyi & Lv, Xiaojing & Weng, Yiwu, 2019. "Coupling effect of operating parameters on performance of a biogas-fueled solid oxide fuel cell/gas turbine hybrid system," Applied Energy, Elsevier, vol. 254(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:58:y:2013:i:c:p:66-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.