Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2013.05.014
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hammond, G.P. & Akwe, S.S. Ondo & Williams, S., 2011. "Techno-economic appraisal of fossil-fuelled power generation systems with carbon dioxide capture and storage," Energy, Elsevier, vol. 36(2), pages 975-984.
- Yang, Christopher & Ogden, Joan M, 2007. "Determining the lowest-cost hydrogen delivery mode," Institute of Transportation Studies, Working Paper Series qt7p3500g2, Institute of Transportation Studies, UC Davis.
- Parker, Nathan, 2004. "Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs," Institute of Transportation Studies, Working Paper Series qt9m40m75r, Institute of Transportation Studies, UC Davis.
- Stuart Landon & Constance Smith, 2010. "Energy Prices and Alberta Government Revenue Volatility," C.D. Howe Institute Commentary, C.D. Howe Institute, issue 313, November.
- Li, Mu & Rao, Ashok D. & Scott Samuelsen, G., 2012. "Performance and costs of advanced sustainable central power plants with CCS and H2 co-production," Applied Energy, Elsevier, vol. 91(1), pages 43-50.
- Pettinau, Alberto & Ferrara, Francesca & Amorino, Carlo, 2012. "Techno-economic comparison between different technologies for a CCS power generation plant integrated with a sub-bituminous coal mine in Italy," Applied Energy, Elsevier, vol. 99(C), pages 32-39.
- Parker, Nathan, 2004. "Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs," Institute of Transportation Studies, Working Paper Series qt2gk0j8kq, Institute of Transportation Studies, UC Davis.
- Prabu, V. & Jayanti, S., 2011. "Simulation of cavity formation in underground coal gasification using bore hole combustion experiments," Energy, Elsevier, vol. 36(10), pages 5854-5864.
- Yang, Christopher & Ogden, Joan M, 2007. "Determining the lowest-cost hydrogen delivery mode," Institute of Transportation Studies, Working Paper Series qt1804p4vw, Institute of Transportation Studies, UC Davis.
- Prabu, V. & Jayanti, S., 2012. "Underground coal-air gasification based solid oxide fuel cell system," Applied Energy, Elsevier, vol. 94(C), pages 406-414.
- Ogden, Joan M, 2004. "Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide," Institute of Transportation Studies, Working Paper Series qt4nx7p2rz, Institute of Transportation Studies, UC Davis.
- McCollum, David L & Ogden, Joan M, 2006. "Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity," Institute of Transportation Studies, Working Paper Series qt1zg00532, Institute of Transportation Studies, UC Davis.
- Ogden, Joan, 2004. "Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide," Institute of Transportation Studies, Working Paper Series qt5hf491tt, Institute of Transportation Studies, UC Davis.
- Sarkar, Susanjib & Kumar, Amit, 2010. "Biohydrogen production from forest and agricultural residues for upgrading of bitumen from oil sands," Energy, Elsevier, vol. 35(2), pages 582-591.
- Park, Sung Ku & Ahn, Ji-Ho & Kim, Tong Seop, 2011. "Performance evaluation of integrated gasification solid oxide fuel cell/gas turbine systems including carbon dioxide capture," Applied Energy, Elsevier, vol. 88(9), pages 2976-2987.
- Olateju, Babatunde & Kumar, Amit, 2011. "Hydrogen production from wind energy in Western Canada for upgrading bitumen from oil sands," Energy, Elsevier, vol. 36(11), pages 6326-6339.
- Ogden, Joan, 2004. "Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide," Institute of Transportation Studies, Working Paper Series qt4b85674s, Institute of Transportation Studies, UC Davis.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Olateju, Babatunde & Monds, Joshua & Kumar, Amit, 2014. "Large scale hydrogen production from wind energy for the upgrading of bitumen from oil sands," Applied Energy, Elsevier, vol. 118(C), pages 48-56.
- Olateju, Babatunde & Kumar, Amit, 2016. "A techno-economic assessment of hydrogen production from hydropower in Western Canada for the upgrading of bitumen from oil sands," Energy, Elsevier, vol. 115(P1), pages 604-614.
- Verma, Aman & Olateju, Babatunde & Kumar, Amit, 2015. "Greenhouse gas abatement costs of hydrogen production from underground coal gasification," Energy, Elsevier, vol. 85(C), pages 556-568.
- McCollum, David L & Ogden, Joan M, 2006. "Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity," Institute of Transportation Studies, Working Paper Series qt1zg00532, Institute of Transportation Studies, UC Davis.
- Lin, Zhenhong & Fan, Yueyue & Ogden, Joan M & Chen, Chien-Wei, 2008. "Optimized Pathways for Regional H2 Infrastructure Transitions: A Case Study for Southern California," Institute of Transportation Studies, Working Paper Series qt9mk5n8jn, Institute of Transportation Studies, UC Davis.
- Parker, Nathan C, 2007. "Optimizing the Design of Biomass Hydrogen Supply Chains Using Real-World Spatial Distributions: A Case Study Using California Rice Straw," Institute of Transportation Studies, Working Paper Series qt8sp9n37c, Institute of Transportation Studies, UC Davis.
- Jarvis, Sean M. & Samsatli, Sheila, 2018. "Technologies and infrastructures underpinning future CO2 value chains: A comprehensive review and comparative analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 85(C), pages 46-68.
- Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
- Parker, Nathan C. & Ogden, Joan M. & Fan, Yueyue, 2008. "The role of biomass in California's hydrogen economy," Energy Policy, Elsevier, vol. 36(10), pages 3925-3939, October.
- Parker, Nathan, 2007. "Optimizing the Design of Biomass Hydrogen Supply ChainsUsing Real-World Spatial Distributions: A Case Study Using California Rice Straw," Institute of Transportation Studies, Working Paper Series qt5kr728sp, Institute of Transportation Studies, UC Davis.
- Clinton Thai & Jack Brouwer, 2023. "Comparative Levelized Cost Analysis of Transmitting Renewable Solar Energy," Energies, MDPI, vol. 16(4), pages 1-21, February.
- Suoton P. Peletiri & Nejat Rahmanian & Iqbal M. Mujtaba, 2018. "CO 2 Pipeline Design: A Review," Energies, MDPI, vol. 11(9), pages 1-25, August.
- Lin, Zhenhong & Chen, Chien-Wei & Fan, Yueyue & Ogden, Joan M., 2008. "Optimized Pathways for Regional H2 Infrastructure Transitions: The Least-Cost Hydrogen for Southern California," Institute of Transportation Studies, Working Paper Series qt0333714s, Institute of Transportation Studies, UC Davis.
- van der Zwaan, B.C.C. & Schoots, K. & Rivera-Tinoco, R. & Verbong, G.P.J., 2011. "The cost of pipelining climate change mitigation: An overview of the economics of CH4, CO2 and H2 transportation," Applied Energy, Elsevier, vol. 88(11), pages 3821-3831.
- Parker, Nathan C & Ogden, Joan & Fan, Yueyue, 2009. "The role of biomass in California's hydrogen economy," Institute of Transportation Studies, Working Paper Series qt8412751s, Institute of Transportation Studies, UC Davis.
- Zhang, Shuai & Liu, Linlin & Zhang, Lei & Zhuang, Yu & Du, Jian, 2018. "An optimization model for carbon capture utilization and storage supply chain: A case study in Northeastern China," Applied Energy, Elsevier, vol. 231(C), pages 194-206.
- Clausen, Lasse R. & Elmegaard, Brian & Houbak, Niels, 2010. "Technoeconomic analysis of a low CO2 emission dimethyl ether (DME) plant based on gasification of torrefied biomass," Energy, Elsevier, vol. 35(12), pages 4831-4842.
- Nakaten, Natalie & Schlüter, Ralph & Azzam, Rafig & Kempka, Thomas, 2014. "Development of a techno-economic model for dynamic calculation of cost of electricity, energy demand and CO2 emissions of an integrated UCG–CCS process," Energy, Elsevier, vol. 66(C), pages 779-790.
- Olateju, Babatunde & Kumar, Amit, 2011. "Hydrogen production from wind energy in Western Canada for upgrading bitumen from oil sands," Energy, Elsevier, vol. 36(11), pages 6326-6339.
- Natalie Nakaten & Thomas Kempka, 2019. "Techno-Economic Comparison of Onshore and Offshore Underground Coal Gasification End-Product Competitiveness," Energies, MDPI, vol. 12(17), pages 1-28, August.
More about this item
Keywords
Techno-economic assessment; Natural gas; Coal; Underground coal gasification; Carbon capture and storage;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:111:y:2013:i:c:p:428-440. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.