Energy analysis of the cryogenic CO2 capture process based on Stirling coolers
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2013.10.087
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mondal, Monoj Kumar & Balsora, Hemant Kumar & Varshney, Prachi, 2012. "Progress and trends in CO2 capture/separation technologies: A review," Energy, Elsevier, vol. 46(1), pages 431-441.
- Iribarren, Diego & Petrakopoulou, Fontina & Dufour, Javier, 2013. "Environmental and thermodynamic evaluation of CO2 capture, transport and storage with and without enhanced resource recovery," Energy, Elsevier, vol. 50(C), pages 477-485.
- Ryi, Shin-Kun & Lee, Chun-Boo & Lee, Sung-Wook & Park, Jong-Soo, 2013. "Pd-based composite membrane and its high-pressure module for pre-combustion CO2 capture," Energy, Elsevier, vol. 51(C), pages 237-242.
- Dios, M. & Souto, J.A. & Casares, J.J., 2013. "Experimental development of CO2, SO2 and NOx emission factors for mixed lignite and subbituminous coal-fired power plant," Energy, Elsevier, vol. 53(C), pages 40-51.
- Le Moullec, Yann, 2013. "Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle," Energy, Elsevier, vol. 49(C), pages 32-46.
- Song, Chun Feng & Kitamura, Yutaka & Li, Shu Hong, 2012. "Evaluation of Stirling cooler system for cryogenic CO2 capture," Applied Energy, Elsevier, vol. 98(C), pages 491-501.
- Duan, Liqiang & Huang, Kexin & Zhang, Xiaoyuan & Yang, Yongping, 2013. "Comparison study on different SOFC hybrid systems with zero-CO2 emission," Energy, Elsevier, vol. 58(C), pages 66-77.
- Olajire, Abass A., 2010. "CO2 capture and separation technologies for end-of-pipe applications – A review," Energy, Elsevier, vol. 35(6), pages 2610-2628.
- Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
- Li, Hailong & Ditaranto, Mario & Yan, Jinyue, 2012. "Carbon capture with low energy penalty: Supplementary fired natural gas combined cycles," Applied Energy, Elsevier, vol. 97(C), pages 164-169.
- Atsonios, K. & Panopoulos, K.D. & Doukelis, A. & Koumanakos, A. & Kakaras, E., 2013. "Cryogenic method for H2 and CH4 recovery from a rich CO2 stream in pre-combustion carbon capture and storage schemes," Energy, Elsevier, vol. 53(C), pages 106-113.
- Cormos, Calin-Cristian & Vatopoulos, Konstantinos & Tzimas, Evangelos, 2013. "Assessment of the consumption of water and construction materials in state-of-the-art fossil fuel power generation technologies involving CO2 capture," Energy, Elsevier, vol. 51(C), pages 37-49.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xie, Heping & Wu, Yifan & Liu, Tao & Wang, Fuhuan & Chen, Bin & Liang, Bin, 2020. "Low-energy-consumption electrochemical CO2 capture driven by biomimetic phenazine derivatives redox medium," Applied Energy, Elsevier, vol. 259(C).
- Hossein Asgharian & Florin Iov & Samuel Simon Araya & Thomas Helmer Pedersen & Mads Pagh Nielsen & Ehsan Baniasadi & Vincenzo Liso, 2023. "A Review on Process Modeling and Simulation of Cryogenic Carbon Capture for Post-Combustion Treatment," Energies, MDPI, vol. 16(4), pages 1-35, February.
- Bassey, Uduak & Sarquah, Khadija & Hartmann, Michael & Tom, Abasi-ofon & Beck, Gesa & Antwi, Edward & Narra, Satyanarayana & Nelles, Michael, 2023. "Thermal treatment options for single-use, multilayered and composite waste plastics in Africa," Energy, Elsevier, vol. 270(C).
- Song, Chunfeng & Liu, Qingling & Deng, Shuai & Li, Hailong & Kitamura, Yutaka, 2019. "Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 265-278.
- Zhao, Ruikai & Liu, Longcheng & Zhao, Li & Deng, Shuai & Li, Shuangjun & Zhang, Yue, 2019. "A comprehensive performance evaluation of temperature swing adsorption for post-combustion carbon dioxide capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
- Sreenivasulu, B. & Gayatri, D.V. & Sreedhar, I. & Raghavan, K.V., 2015. "A journey into the process and engineering aspects of carbon capture technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1324-1350.
- Zhao, Ruikai & Deng, Shuai & Liu, Yinan & Zhao, Qing & He, Junnan & Zhao, Li, 2017. "Carbon pump: Fundamental theory and applications," Energy, Elsevier, vol. 119(C), pages 1131-1143.
- Mikulčić, Hrvoje & Ridjan Skov, Iva & Dominković, Dominik Franjo & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Tan, Raymond & Duić, Neven & Hidayah Mohamad, Siti Nur & Wang, Xuebin, 2019. "Flexible Carbon Capture and Utilization technologies in future energy systems and the utilization pathways of captured CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
- Enayatizadeh, Hossein & Arjomand, Alireza & Tynjälä, Tero & Inkeri, Eero, 2024. "Cryogenic carbon capture design through CO2 anti-sublimation for a gas turbine exhaust: Environmental, economic, energy, and exergy analysis," Energy, Elsevier, vol. 304(C).
- Chen, Yaping & Zhu, Zilong & Wu, Jiafeng & Yang, Shifan & Zhang, Baohuai, 2017. "A novel LNG/O2 combustion gas and steam mixture cycle with energy storage and CO2 capture," Energy, Elsevier, vol. 120(C), pages 128-137.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Višković, Alfredo & Franki, Vladimir & Valentić, Vladimir, 2014. "CCS (carbon capture and storage) investment possibility in South East Europe: A case study for Croatia," Energy, Elsevier, vol. 70(C), pages 325-337.
- Song, Chunfeng & Liu, Qingling & Ji, Na & Deng, Shuai & Zhao, Jun & Li, Yang & Kitamura, Yutaka, 2017. "Reducing the energy consumption of membrane-cryogenic hybrid CO2 capture by process optimization," Energy, Elsevier, vol. 124(C), pages 29-39.
- Theo, Wai Lip & Lim, Jeng Shiun & Hashim, Haslenda & Mustaffa, Azizul Azri & Ho, Wai Shin, 2016. "Review of pre-combustion capture and ionic liquid in carbon capture and storage," Applied Energy, Elsevier, vol. 183(C), pages 1633-1663.
- Rohlfs, Wilko & Madlener, Reinhard, 2013.
"Assessment of clean-coal strategies: The questionable merits of carbon capture-readiness,"
Energy, Elsevier, vol. 52(C), pages 27-36.
- Rohlfs, Wilko & Madlener, Reinhard, 2012. "Assessment of Clean-Coal Strategies: The Questionable Merits of Carbon Capture-Readiness," FCN Working Papers 18/2012, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
- Kobayashi, Makoto & Akiho, Hiroyuki & Nakao, Yoshinobu, 2015. "Performance evaluation of porous sodium aluminate sorbent for halide removal process in oxy-fuel IGCC power generation plant," Energy, Elsevier, vol. 92(P3), pages 320-327.
- Narukulla, Ramesh & Chaturvedi, Krishna Raghav & Ojha, Umaprasana & Sharma, Tushar, 2022. "Carbon dioxide capturing evaluation of polyacryloyl hydrazide solutions via rheological analysis for carbon utilization applications," Energy, Elsevier, vol. 241(C).
- Cormos, Calin-Cristian, 2014. "Economic evaluations of coal-based combustion and gasification power plants with post-combustion CO2 capture using calcium looping cycle," Energy, Elsevier, vol. 78(C), pages 665-673.
- Fan, Xing & Wang, Yangle & Zhou, Yuan & Chen, Jingtan & Huang, Yanping & Wang, Junfeng, 2018. "Experimental study of supercritical CO2 leakage behavior from pressurized vessels," Energy, Elsevier, vol. 150(C), pages 342-350.
- Li, Kang & Zhou, Xuejin & Tu, Ran & Xie, Qiyuan & Jiang, Xi, 2014. "The flow and heat transfer characteristics of supercritical CO2 leakage from a pipeline," Energy, Elsevier, vol. 71(C), pages 665-672.
- Zhou, Yuan & Huang, Yanping & Tian, Gengyuan & Yuan, Yuan & Zeng, Chengtian & Huang, Jiajian & Tang, Longchang, 2022. "Classification and characteristics of supercritical carbon dioxide leakage from a vessel," Energy, Elsevier, vol. 258(C).
- Wang, Lei & Yao, Bowen & Xie, Haojun & Winterfeld, Philip H. & Kneafsey, Timothy J. & Yin, Xiaolong & Wu, Yu-Shu, 2017. "CO2 injection-induced fracturing in naturally fractured shale rocks," Energy, Elsevier, vol. 139(C), pages 1094-1110.
- A. G. Olabi & Tabbi Wilberforce & Enas Taha Sayed & Nabila Shehata & Abdul Hai Alami & Hussein M. Maghrabie & Mohammad Ali Abdelkareem, 2022. "Prospect of Post-Combustion Carbon Capture Technology and Its Impact on the Circular Economy," Energies, MDPI, vol. 15(22), pages 1-38, November.
- Chao, Cong & Deng, Yimin & Dewil, Raf & Baeyens, Jan & Fan, Xianfeng, 2021. "Post-combustion carbon capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Sreenivasulu, B. & Gayatri, D.V. & Sreedhar, I. & Raghavan, K.V., 2015. "A journey into the process and engineering aspects of carbon capture technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1324-1350.
- Lombardi, L. & Carnevale, E.A., 2016. "Analysis of an innovative process for landfill gas quality improvement," Energy, Elsevier, vol. 109(C), pages 1107-1117.
- Song, Chunfeng & Liu, Qingling & Deng, Shuai & Li, Hailong & Kitamura, Yutaka, 2019. "Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 265-278.
- Bigham, Sajjad & Yu, Dazhi & Chugh, Devesh & Moghaddam, Saeed, 2014. "Moving beyond the limits of mass transport in liquid absorbent microfilms through the implementation of surface-induced vortices," Energy, Elsevier, vol. 65(C), pages 621-630.
- Bobo Zheng & Jiuping Xu, 2014. "Carbon Capture and Storage Development Trends from a Techno-Paradigm Perspective," Energies, MDPI, vol. 7(8), pages 1-30, August.
- Bhatia, Shashi Kant & Bhatia, Ravi Kant & Jeon, Jong-Min & Kumar, Gopalakrishnan & Yang, Yung-Hun, 2019. "Carbon dioxide capture and bioenergy production using biological system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 143-158.
- Alfredo Viskovic & Vladimir Valentic & Vladimir Franki, 2013. "The impac t of carbon prices on CCS investment in South East Europe," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2013(3), pages 91-120.
More about this item
Keywords
CO2 capture; Cryogenic; Stirling cooler; Energy consumption;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:65:y:2014:i:c:p:580-589. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.