IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v87y2015icp490-503.html
   My bibliography  Save this article

Study on a new IGCC (Integrated Gasification Combined Cycle) system with CO2 capture by integrating MCFC (Molten Carbonate Fuel Cell)

Author

Listed:
  • Duan, Liqiang
  • Sun, Siyu
  • Yue, Long
  • Qu, Wanjun
  • Yang, Yongping

Abstract

In this paper, a new Integrated Gasification Combined Cycle (IGCC) system with less CO2 emission by integrating a Molten Carbonate Fuel Cell (MCFC) to capture CO2 has been proposed. The performance of the new system is compared with other three systems: a conventional IGCC system without CO2 capture, an IGCC system with pre-combustion capture and an IGCC system with oxy-fuel combustion capture. In addition, the effects of the key parameters of MCFC such as CO2 utilization factor, fuel utilization factor and the operating temperature of MCFC on the new system performance have been analyzed and compared. The results show that when the CO2 capture rate is 88%, the efficiency of the new system is about 47.31%, 2.97% higher than that of the IGCC without CO2 capture, 10.45% higher than the IGCC system with pre-combustion CO2 capture, and 12.55% higher than the IGCC system with oxy-fuel combustion CO2 capture. Though the new system has an obvious superiority of thermal performance, its technical economic performance needs be improved with the technical development of MCFC. The research achievements will provide a new way for further study on CO2 capture from IGCC system with lower energy penalty.

Suggested Citation

  • Duan, Liqiang & Sun, Siyu & Yue, Long & Qu, Wanjun & Yang, Yongping, 2015. "Study on a new IGCC (Integrated Gasification Combined Cycle) system with CO2 capture by integrating MCFC (Molten Carbonate Fuel Cell)," Energy, Elsevier, vol. 87(C), pages 490-503.
  • Handle: RePEc:eee:energy:v:87:y:2015:i:c:p:490-503
    DOI: 10.1016/j.energy.2015.05.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215005459
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.05.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lucia, Umberto, 2014. "Overview on fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 164-169.
    2. Wee, Jung-Ho, 2014. "Carbon dioxide emission reduction using molten carbonate fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 178-191.
    3. Kunze, Christian & Spliethoff, Hartmut, 2012. "Assessment of oxy-fuel, pre- and post-combustion-based carbon capture for future IGCC plants," Applied Energy, Elsevier, vol. 94(C), pages 109-116.
    4. Sharaf, Omar Z. & Orhan, Mehmet F., 2014. "An overview of fuel cell technology: Fundamentals and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 810-853.
    5. Campanari, S. & Chiesa, P. & Manzolini, G. & Bedogni, S., 2014. "Economic analysis of CO2 capture from natural gas combined cycles using Molten Carbonate Fuel Cells," Applied Energy, Elsevier, vol. 130(C), pages 562-573.
    6. Duan, Liqiang & Zhu, Jingnan & Yue, Long & Yang, Yongping, 2014. "Study on a gas-steam combined cycle system with CO2 capture by integrating molten carbonate fuel cell," Energy, Elsevier, vol. 74(C), pages 417-427.
    7. Duan, Liqiang & Huang, Kexin & Zhang, Xiaoyuan & Yang, Yongping, 2013. "Comparison study on different SOFC hybrid systems with zero-CO2 emission," Energy, Elsevier, vol. 58(C), pages 66-77.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Bian & Liqiang Duan & Yongping Yang, 2023. "Simulation and Economic Investigation of CO 2 Separation from Gas Turbine Exhaust Gas by Molten Carbonate Fuel Cell with Exhaust Gas Recirculation and Selective Exhaust Gas Recirculation," Energies, MDPI, vol. 16(8), pages 1-21, April.
    2. Szczęśniak, Arkadiusz & Milewski, Jarosław & Szabłowski, Łukasz & Bujalski, Wojciech & Dybiński, Olaf, 2020. "Dynamic model of a molten carbonate fuel cell 1 kW stack," Energy, Elsevier, vol. 200(C).
    3. Sahu, Nitesh Kumar & Kumar, Mayank & Dewan, Anupam, 2022. "Sophisticated interplay of operating conditions governs flow field transition and optimal conversion inside tangentially fired gasifiers," Energy, Elsevier, vol. 252(C).
    4. Bahram Ghorbani, 2021. "Development of an Integrated Structure for the Tri-Generation of Power, Liquid Carbon Dioxide, and Medium Pressure Steam Using a Molten Carbonate Fuel Cell, a Dual Pressure Linde-Hampson Liquefaction ," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
    5. Bian, Jing & Zhang, Hanfei & Duan, Liqiang & Desideri, Umberto & Yang, Yongping, 2022. "Study of an integrated gas turbine -Molten carbonate fuel cell-organic Rankine cycle system with CO2 recovery," Applied Energy, Elsevier, vol. 323(C).
    6. Wang, Fu & Deng, Shuai & Zhang, Houcheng & Wang, Jiatang & Zhao, Jiapei & Miao, He & Yuan, Jinliang & Yan, Jinyue, 2020. "A comprehensive review on high-temperature fuel cells with carbon capture," Applied Energy, Elsevier, vol. 275(C).
    7. Nhuchhen, Daya R. & Sit, Song P. & Layzell, David B., 2022. "Towards net-zero emission cement and power production using Molten Carbonate Fuel Cells," Applied Energy, Elsevier, vol. 306(PB).
    8. Jing Bian & Liqiang Duan & Jing Lei & Yongping Yang, 2020. "Study on the Entropy Generation Distribution Characteristics of Molten Carbonate Fuel Cell System under Different CO 2 Enrichment Conditions," Energies, MDPI, vol. 13(21), pages 1-18, November.
    9. Zhang, Shihan & Shen, Yao & Wang, Lidong & Chen, Jianmeng & Lu, Yongqi, 2019. "Phase change solvents for post-combustion CO2 capture: Principle, advances, and challenges," Applied Energy, Elsevier, vol. 239(C), pages 876-897.
    10. Sadeghi, Saber & Askari, Ighball Baniasad, 2019. "Prefeasibility techno-economic assessment of a hybrid power plant with photovoltaic, fuel cell and Compressed Air Energy Storage (CAES)," Energy, Elsevier, vol. 168(C), pages 409-424.
    11. Chen, Shiyi & Zhou, Nan & Wu, Mudi & Chen, Shubo & Xiang, Wenguo, 2022. "Integration of molten carbonate fuel cell and chemical looping air separation for high-efficient power generation and CO2 capture," Energy, Elsevier, vol. 254(PA).
    12. Wang, Maojian & Liu, Guilian & Hui, Chi Wai, 2016. "Simultaneous optimization and integration of gas turbine and air separation unit in IGCC plant," Energy, Elsevier, vol. 116(P2), pages 1294-1301.
    13. Li, Chunxi & Guo, Shiqi & Ye, Xuemin & Fu, Wenfeng, 2019. "Performance and thermoeconomics of solar-aided double-reheat coal-fired power systems with carbon capture," Energy, Elsevier, vol. 177(C), pages 1-15.
    14. Turi, Davide Maria & Chiesa, Paolo & Macchi, Ennio & Ghoniem, Ahmed F., 2016. "High fidelity model of the oxygen flux across ion transport membrane reactor: Mechanism characterization using experimental data," Energy, Elsevier, vol. 96(C), pages 127-141.
    15. Yan, Pei & Zheng, Chenghang & Zhu, Weizhuo & Xu, Xi & Gao, Xiang & Luo, Zhongyang & Ni, Mingjiang & Cen, Kefa, 2016. "An experimental study on the effects of temperature and pressure on negative corona discharge in high-temperature ESPs," Applied Energy, Elsevier, vol. 164(C), pages 28-35.
    16. Mei, Weiguang & Zhai, Rongrong & Zhao, Yingxin & Yao, Zhiqiang & Ma, Ning, 2024. "Exergoeconomic analysis and multi-objective optimization using NSGA-II in a novel dual-stage Selexol process of integrated gasification combined cycle," Energy, Elsevier, vol. 286(C).
    17. Ahn, Ji Ho & Kim, Tong Seop, 2020. "Effect of oxygen supply method on the performance of a micro gas turbine-based triple combined cycle with oxy-combustion carbon capture," Energy, Elsevier, vol. 211(C).
    18. Chen, Yaping & Zhu, Zilong & Wu, Jiafeng & Yang, Shifan & Zhang, Baohuai, 2017. "A novel LNG/O2 combustion gas and steam mixture cycle with energy storage and CO2 capture," Energy, Elsevier, vol. 120(C), pages 128-137.
    19. Nhuchhen, Daya R., 2023. "Integrated gasification carbon capture plant using molten carbonate fuel cell: An application to a cement industry," Energy, Elsevier, vol. 282(C).
    20. Cao, Yang & He, Boshu & Ding, Guangchao & Su, Liangbin & Duan, Zhipeng, 2017. "Energy and exergy investigation on two improved IGCC power plants with different CO2 capture schemes," Energy, Elsevier, vol. 140(P1), pages 47-57.
    21. Duan, Liqiang & Yue, Long & Feng, Tao & Lu, Hao & Bian, Jing, 2016. "Study on a novel pressurized MCFC hybrid system with CO2 capture," Energy, Elsevier, vol. 109(C), pages 737-750.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Fu & Deng, Shuai & Zhang, Houcheng & Wang, Jiatang & Zhao, Jiapei & Miao, He & Yuan, Jinliang & Yan, Jinyue, 2020. "A comprehensive review on high-temperature fuel cells with carbon capture," Applied Energy, Elsevier, vol. 275(C).
    2. Duan, Liqiang & Yue, Long & Feng, Tao & Lu, Hao & Bian, Jing, 2016. "Study on a novel pressurized MCFC hybrid system with CO2 capture," Energy, Elsevier, vol. 109(C), pages 737-750.
    3. Duan, Liqiang & Yue, Long & Qu, Wanjun & Yang, Yongping, 2015. "Study on CO2 capture from molten carbonate fuel cell hybrid system integrated with oxygen ion transfer membrane," Energy, Elsevier, vol. 93(P1), pages 20-30.
    4. Barckholtz, Timothy A. & Taylor, Kevin M. & Narayanan, Sundar & Jolly, Stephen & Ghezel-Ayagh, Hossein, 2022. "Molten carbonate fuel cells for simultaneous CO2 capture, power generation, and H2 generation," Applied Energy, Elsevier, vol. 313(C).
    5. Duan, Liqiang & Xia, Kun & Feng, Tao & Jia, Shilun & Bian, Jing, 2016. "Study on coal-fired power plant with CO2 capture by integrating molten carbonate fuel cell system," Energy, Elsevier, vol. 117(P2), pages 578-589.
    6. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Yousefi, Hossein, 2017. "Energy hub: From a model to a concept – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1512-1527.
    7. Pérez-Trujillo, Juan Pedro & Elizalde-Blancas, Francisco & McPhail, Stephen J. & Della Pietra, Massimiliano & Bosio, Barbara, 2020. "Preliminary theoretical and experimental analysis of a Molten Carbonate Fuel Cell operating in reversible mode," Applied Energy, Elsevier, vol. 263(C).
    8. Jing Bian & Liqiang Duan & Yongping Yang, 2023. "Simulation and Economic Investigation of CO 2 Separation from Gas Turbine Exhaust Gas by Molten Carbonate Fuel Cell with Exhaust Gas Recirculation and Selective Exhaust Gas Recirculation," Energies, MDPI, vol. 16(8), pages 1-21, April.
    9. Zakaria, Zulfirdaus & Kamarudin, Siti Kartom & Abd Wahid, Khairul Anuar & Abu Hassan, Saiful Hasmady, 2021. "The progress of fuel cell for malaysian residential consumption: Energy status and prospects to introduction as a renewable power generation system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    10. Alipour Moghaddam, Jafar & Parnian, Mohammad Javad & Rowshanzamir, Soosan, 2018. "Preparation, characterization, and electrochemical properties investigation of recycled proton exchange membrane for fuel cell applications," Energy, Elsevier, vol. 161(C), pages 699-709.
    11. Mohammed, Hanin & Al-Othman, Amani & Nancarrow, Paul & Tawalbeh, Muhammad & El Haj Assad, Mamdouh, 2019. "Direct hydrocarbon fuel cells: A promising technology for improving energy efficiency," Energy, Elsevier, vol. 172(C), pages 207-219.
    12. Wu, Sijie & Zhang, Houcheng & Ni, Meng, 2016. "Performance assessment of a hybrid system integrating a molten carbonate fuel cell and a thermoelectric generator," Energy, Elsevier, vol. 112(C), pages 520-527.
    13. Jouin, Marine & Gouriveau, Rafael & Hissel, Daniel & Péra, Marie-Cécile & Zerhouni, Noureddine, 2016. "Degradations analysis and aging modeling for health assessment and prognostics of PEMFC," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 78-95.
    14. Ong, Samuel & Al-Othman, Amani & Tawalbeh, Muhammad, 2023. "Emerging technologies in prognostics for fuel cells including direct hydrocarbon fuel cells," Energy, Elsevier, vol. 277(C).
    15. Bian, Jing & Zhang, Hanfei & Duan, Liqiang & Desideri, Umberto & Yang, Yongping, 2022. "Study of an integrated gas turbine -Molten carbonate fuel cell-organic Rankine cycle system with CO2 recovery," Applied Energy, Elsevier, vol. 323(C).
    16. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    17. Xu, Shisen & Ren, Yongqiang & Wang, Baomin & Xu, Yue & Chen, Liang & Wang, Xiaolong & Xiao, Tiancun, 2014. "Development of a novel 2-stage entrained flow coal dry powder gasifier," Applied Energy, Elsevier, vol. 113(C), pages 318-323.
    18. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    19. Jae Yun Jeong & Inje Kang & Ki Seok Choi & Byeong-Hee Lee, 2018. "Network Analysis on Green Technology in National Research and Development Projects in Korea," Sustainability, MDPI, vol. 10(4), pages 1-12, April.
    20. Moioli, Stefania & Giuffrida, Antonio & Romano, Matteo C. & Pellegrini, Laura A. & Lozza, Giovanni, 2016. "Assessment of MDEA absorption process for sequential H2S removal and CO2 capture in air-blown IGCC plants," Applied Energy, Elsevier, vol. 183(C), pages 1452-1470.

    More about this item

    Keywords

    IGCC; MCFC; CO2 capture; System integration;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:87:y:2015:i:c:p:490-503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.