IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i2p975-984.html
   My bibliography  Save this article

Techno-economic appraisal of fossil-fuelled power generation systems with carbon dioxide capture and storage

Author

Listed:
  • Hammond, G.P.
  • Akwe, S.S. Ondo
  • Williams, S.

Abstract

Carbon capture and storage (CCS) facilities coupled to power plants provide a climate change mitigation strategy that potentially permits the continued use of fossil fuels whilst reducing the carbon dioxide (CO2) emissions. This process involves three basic stages: capture and compression of CO2 from power stations, transport of CO2, and storage away from the atmosphere for hundreds to thousands of years. Potential routes for the capture, transport and storage of CO2 from United Kingdom (UK) power plants are examined. Six indicative options are evaluated, based on ‘Pulverised Coal’, ‘Natural Gas Combined Cycle’, and ‘Integrated (coal) Gasification Combined Cycle’ power stations. Chemical and physical CO2 absorption capture techniques are employed with realistic transport possibilities to ‘Enhanced Oil Recovery’ sites or depleted gas fields in the North Sea. The selected options are quantitatively assessed against well-established economic and energy-related criteria. Results show that CO2 capture can reduce emissions by over 90%. However, this will reduce the efficiency of the power plants concerned, incurring energy penalties between 14 and 30% compared to reference plants without capture. Costs of capture, transport and storage are concatenated to show that the whole CCS chain ‘cost of electricity’ (COE) rises by 27–142% depending on the option adopted. This is a significant cost increase, although calculations show that the average ‘cost of CO2 captured’ is £15/tCO2 in 2005 prices [the current base year for official UK producer price indices]. If potential governmental carbon penalties were introduced at this level, then the COE would equate to the same as the reference plant, and make CCS a viable option to help mitigate large-scale climate change.

Suggested Citation

  • Hammond, G.P. & Akwe, S.S. Ondo & Williams, S., 2011. "Techno-economic appraisal of fossil-fuelled power generation systems with carbon dioxide capture and storage," Energy, Elsevier, vol. 36(2), pages 975-984.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:2:p:975-984
    DOI: 10.1016/j.energy.2010.12.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210007024
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.12.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Foxon, T. J. & Gross, R. & Chase, A. & Howes, J. & Arnall, A. & Anderson, D., 2005. "UK innovation systems for new and renewable energy technologies: drivers, barriers and systems failures," Energy Policy, Elsevier, vol. 33(16), pages 2123-2137, November.
    2. Allen, S.R. & Hammond, G.P. & McManus, M.C., 2008. "Prospects for and barriers to domestic micro-generation: A United Kingdom perspective," Applied Energy, Elsevier, vol. 85(6), pages 528-544, June.
    3. Midttun, Atle & Gautesen, Kristian, 2007. "Feed in or certificates, competition or complementarity? Combining a static efficiency and a dynamic innovation perspective on the greening of the energy industry," Energy Policy, Elsevier, vol. 35(3), pages 1419-1422, March.
    4. Riahi, Keywan & Rubin, Edward S. & Taylor, Margaret R. & Schrattenholzer, Leo & Hounshell, David, 2004. "Technological learning for carbon capture and sequestration technologies," Energy Economics, Elsevier, vol. 26(4), pages 539-564, July.
    5. Dyer, Caroline H. & Hammond, Geoffrey P. & Jones, Craig I. & McKenna, Russell C., 2008. "Enabling technologies for industrial energy demand management," Energy Policy, Elsevier, vol. 36(12), pages 4434-4443, December.
    6. Rubin, Edward S. & Chen, Chao & Rao, Anand B., 2007. "Cost and performance of fossil fuel power plants with CO2 capture and storage," Energy Policy, Elsevier, vol. 35(9), pages 4444-4454, September.
    7. Gibbins, Jon & Chalmers, Hannah, 2008. "Carbon capture and storage," Energy Policy, Elsevier, vol. 36(12), pages 4317-4322, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hammond, Geoffrey P. & Harajli, Hassan A. & Jones, Craig I. & Winnett, Adrian B., 2012. "Whole systems appraisal of a UK Building Integrated Photovoltaic (BIPV) system: Energy, environmental, and economic evaluations," Energy Policy, Elsevier, vol. 40(C), pages 219-230.
    2. Hammond, Geoffrey P. & Hazeldine, Tom, 2015. "Indicative energy technology assessment of advanced rechargeable batteries," Applied Energy, Elsevier, vol. 138(C), pages 559-571.
    3. Zhou, Wenji & Zhu, Bing & Fuss, Sabine & Szolgayová, Jana & Obersteiner, Michael & Fei, Weiyang, 2010. "Uncertainty modeling of CCS investment strategy in China's power sector," Applied Energy, Elsevier, vol. 87(7), pages 2392-2400, July.
    4. Barelli, L. & Ottaviano, A., 2014. "Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions," Energy, Elsevier, vol. 71(C), pages 118-129.
    5. del Río, Pablo, 2012. "The dynamic efficiency of feed-in tariffs: The impact of different design elements," Energy Policy, Elsevier, vol. 41(C), pages 139-151.
    6. Wang, Honglin & Liu, Yanrong & Laaksonen, Aatto & Krook-Riekkola, Anna & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "Carbon recycling – An immense resource and key to a smart climate engineering: A survey of technologies, cost and impurity impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    7. Goh, Tian & Ang, B.W. & Xu, X.Y., 2018. "Quantifying drivers of CO2 emissions from electricity generation – Current practices and future extensions," Applied Energy, Elsevier, vol. 231(C), pages 1191-1204.
    8. Yaqoot, Mohammed & Diwan, Parag & Kandpal, Tara C., 2016. "Review of barriers to the dissemination of decentralized renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 477-490.
    9. Bossink, Bart, 2020. "Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    10. Lee, Zhi Hua & Lee, Keat Teong & Bhatia, Subhash & Mohamed, Abdul Rahman, 2012. "Post-combustion carbon dioxide capture: Evolution towards utilization of nanomaterials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2599-2609.
    11. Karagiannis, Ioannis C. & Soldatos, Peter G., 2010. "Estimation of critical CO2 values when planning the power source in water desalination: The case of the small Aegean islands," Energy Policy, Elsevier, vol. 38(8), pages 3891-3897, August.
    12. Nykvist, Björn, 2013. "Ten times more difficult: Quantifying the carbon capture and storage challenge," Energy Policy, Elsevier, vol. 55(C), pages 683-689.
    13. Finney, Karen N. & Sharifi, Vida N. & Swithenbank, Jim, 2012. "The negative impacts of the global economic downturn on funding decentralised energy in the UK," Energy Policy, Elsevier, vol. 51(C), pages 290-300.
    14. Hammond, Geoffrey P. & Howard, Hayley R. & Jones, Craig I., 2013. "The energy and environmental implications of UK more electric transition pathways: A whole systems perspective," Energy Policy, Elsevier, vol. 52(C), pages 103-116.
    15. Muhammad Nawaz & Humbul Suleman & Abdulhalim Shah Maulud, 2022. "Carbon Capture and Utilization: A Bibliometric Analysis from 2007–2021," Energies, MDPI, vol. 15(18), pages 1-17, September.
    16. Zhou, Wenji & Zhu, Bing & Chen, Dingjiang & Zhao, Fangxian & Fei, Weiyang, 2014. "How policy choice affects investment in low-carbon technology: The case of CO2 capture in indirect coal liquefaction in China," Energy, Elsevier, vol. 73(C), pages 670-679.
    17. Christian Felix Böttcher & Martin Müller, 2015. "Drivers, Practices and Outcomes of Low‐carbon Operations: Approaches of German Automotive Suppliers to Cutting Carbon Emissions," Business Strategy and the Environment, Wiley Blackwell, vol. 24(6), pages 477-498, September.
    18. Bistline, John E. & Rai, Varun, 2010. "The role of carbon capture technologies in greenhouse gas emissions-reduction models: A parametric study for the U.S. power sector," Energy Policy, Elsevier, vol. 38(2), pages 1177-1191, February.
    19. Allen, S.R. & Hammond, G.P. & McManus, M.C., 2008. "Prospects for and barriers to domestic micro-generation: A United Kingdom perspective," Applied Energy, Elsevier, vol. 85(6), pages 528-544, June.
    20. Melchior, Tobias & Madlener, Reinhard, 2012. "Economic evaluation of IGCC plants with hot gas cleaning," Applied Energy, Elsevier, vol. 97(C), pages 170-184.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:2:p:975-984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.