Process integration and optimization of a solid oxide fuel cell – Gas turbine hybrid cycle fueled with hydrothermally gasified waste biomass
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2012.02.059
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Molyneaux, A. & Leyland, G. & Favrat, D., 2010. "Environomic multi-objective optimisation of a district heating network considering centralized and decentralized heat pumps," Energy, Elsevier, vol. 35(2), pages 751-758.
- Hamelinck, Carlo N. & Faaij, André P.C. & den Uil, Herman & Boerrigter, Harold, 2004. "Production of FT transportation fuels from biomass; technical options, process analysis and optimisation, and development potential," Energy, Elsevier, vol. 29(11), pages 1743-1771.
- Favrat, D. & Marechal, F. & Epelly, O., 2008. "The challenge of introducing an exergy indicator in a local law on energy," Energy, Elsevier, vol. 33(2), pages 130-136.
- Bang-Møller, C. & Rokni, M. & Elmegaard, B., 2011. "Exergy analysis and optimization of a biomass gasification, solid oxide fuel cell and micro gas turbine hybrid system," Energy, Elsevier, vol. 36(8), pages 4740-4752.
- Park, Sung Ku & Kim, Tong Seop & Sohn, Jeong L. & Lee, Young Duk, 2011. "An integrated power generation system combining solid oxide fuel cell and oxy-fuel combustion for high performance and CO2 capture," Applied Energy, Elsevier, vol. 88(4), pages 1187-1196, April.
- Gassner, Martin & Maréchal, François, 2009. "Thermodynamic comparison of the FICFB and Viking gasification concepts," Energy, Elsevier, vol. 34(10), pages 1744-1753.
- Franzoni, A. & Magistri, L. & Traverso, A. & Massardo, A.F., 2008. "Thermoeconomic analysis of pressurized hybrid SOFC systems with CO2 separation," Energy, Elsevier, vol. 33(2), pages 311-320.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Park, K. & Hwang, H.K., 2013. "Fabrication and electrical properties of nanocrystalline Dy3+-doped CeO2 for intermediate-temperature solid oxide fuel cells," Energy, Elsevier, vol. 55(C), pages 304-309.
- Recalde, Mayra & Woudstra, Theo & Aravind, P.V., 2018. "Renewed sanitation technology: A highly efficient faecal-sludge gasification–solid oxide fuel cell power plant," Applied Energy, Elsevier, vol. 222(C), pages 515-529.
- Harun, Nor Farida & Tucker, David & Adams II, Thomas A., 2017. "Technical challenges in operating an SOFC in fuel flexible gas turbine hybrid systems: Coupling effects of cathode air mass flow," Applied Energy, Elsevier, vol. 190(C), pages 852-867.
- Ramadhani, F. & Hussain, M.A. & Mokhlis, H. & Hajimolana, S., 2017. "Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 460-484.
- Buonomano, Annamaria & Calise, Francesco & d’Accadia, Massimo Dentice & Palombo, Adolfo & Vicidomini, Maria, 2015. "Hybrid solid oxide fuel cells–gas turbine systems for combined heat and power: A review," Applied Energy, Elsevier, vol. 156(C), pages 32-85.
- Mounir, Hamid & Belaiche, Mohamed & El Marjani, Abdellatif & El Gharad, Abdellah, 2014. "Thermal stress and probability of survival investigation in a multi-bundle integrated-planar solid oxide fuel cells IP-SOFC (integrated-planar solid oxide fuel cell)," Energy, Elsevier, vol. 66(C), pages 378-386.
- Baldinelli, Arianna & Barelli, Linda & Bidini, Gianni, 2015. "Performance characterization and modelling of syngas-fed SOFCs (solid oxide fuel cells) varying fuel composition," Energy, Elsevier, vol. 90(P2), pages 2070-2084.
- Lv, Xiaojing & Lu, Chaohao & Wang, Yuzhang & Weng, Yiwu, 2015. "Effect of operating parameters on a hybrid system of intermediate-temperature solid oxide fuel cell and gas turbine," Energy, Elsevier, vol. 91(C), pages 10-19.
- Cabeza, Pablo & Silva Queiroz, Joao Paulo & Criado, Manuel & Jiménez, Cristina & Bermejo, Maria Dolores & Mato, Fidel & Cocero, Maria Jose, 2015. "Supercritical water oxidation for energy production by hydrothermal flame as internal heat source. Experimental results and energetic study," Energy, Elsevier, vol. 90(P2), pages 1584-1594.
- Wang, Yuan & Cai, Ling & Liu, Tie & Wang, Junyi & Chen, Jincan, 2015. "An efficient strategy exploiting the waste heat in a solid oxide fuel cell system," Energy, Elsevier, vol. 93(P1), pages 900-907.
- Lv, Xiaojing & Liu, Xing & Gu, Chenghong & Weng, Yiwu, 2016. "Determination of safe operation zone for an intermediate-temperature solid oxide fuel cell and gas turbine hybrid system," Energy, Elsevier, vol. 99(C), pages 91-102.
- Azizi, Mohammad Ali & Brouwer, Jacob, 2018. "Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis, transient operation, controls and optimization," Applied Energy, Elsevier, vol. 215(C), pages 237-289.
- Santhanam, S. & Schilt, C. & Turker, B. & Woudstra, T. & Aravind, P.V., 2016. "Thermodynamic modeling and evaluation of high efficiency heat pipe integrated biomass Gasifier–Solid Oxide Fuel Cells–Gas Turbine systems," Energy, Elsevier, vol. 109(C), pages 751-764.
- Lee, Jechan & Kim, Soosan & You, Siming & Park, Young-Kwon, 2023. "Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
- Verda, Vittorio & Sciacovelli, Adriano, 2012. "Optimal design and operation of a biogas fuelled MCFC (molten carbonate fuel cells) system integrated with an anaerobic digester," Energy, Elsevier, vol. 47(1), pages 150-157.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Peduzzi, Emanuela & Tock, Laurence & Boissonnet, Guillaume & Maréchal, François, 2013. "Thermo-economic evaluation and optimization of the thermo-chemical conversion of biomass into methanol," Energy, Elsevier, vol. 58(C), pages 9-16.
- Asadullah, Mohammad, 2014. "Biomass gasification gas cleaning for downstream applications: A comparative critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 118-132.
- Choudhury, Arnab & Chandra, H. & Arora, A., 2013. "Application of solid oxide fuel cell technology for power generation—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 430-442.
- Tock, Laurence & Maréchal, François, 2012. "Co-production of hydrogen and electricity from lignocellulosic biomass: Process design and thermo-economic optimization," Energy, Elsevier, vol. 45(1), pages 339-349.
- Singlitico, Alessandro & Kilgallon, Ian & Goggins, Jamie & Monaghan, Rory F.D., 2019. "GIS-based techno-economic optimisation of a regional supply chain for large-scale deployment of bio-SNG in a natural gas network," Applied Energy, Elsevier, vol. 250(C), pages 1036-1052.
- Azizi, Mohammad Ali & Brouwer, Jacob, 2018. "Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis, transient operation, controls and optimization," Applied Energy, Elsevier, vol. 215(C), pages 237-289.
- García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul & Morillón Gálvez, David, 2017. "The role of an exergy-based building stock model for exploration of future decarbonisation scenarios and policy making," Energy Policy, Elsevier, vol. 105(C), pages 467-483.
- Doherty, Wayne & Reynolds, Anthony & Kennedy, David, 2010. "Computer simulation of a biomass gasification-solid oxide fuel cell power system using Aspen Plus," Energy, Elsevier, vol. 35(12), pages 4545-4555.
- Wang, Fu & Deng, Shuai & Zhang, Houcheng & Wang, Jiatang & Zhao, Jiapei & Miao, He & Yuan, Jinliang & Yan, Jinyue, 2020. "A comprehensive review on high-temperature fuel cells with carbon capture," Applied Energy, Elsevier, vol. 275(C).
- Prabu, V. & Jayanti, S., 2012. "Underground coal-air gasification based solid oxide fuel cell system," Applied Energy, Elsevier, vol. 94(C), pages 406-414.
- Yildirim, Nurdan & Toksoy, Macit & Gokcen, Gulden, 2010. "Piping network design of geothermal district heating systems: Case study for a university campus," Energy, Elsevier, vol. 35(8), pages 3256-3262.
- Duan, Liqiang & Huang, Kexin & Zhang, Xiaoyuan & Yang, Yongping, 2013. "Comparison study on different SOFC hybrid systems with zero-CO2 emission," Energy, Elsevier, vol. 58(C), pages 66-77.
- Amigun, Bamikole & Gorgens, Johann & Knoetze, Hansie, 2010. "Biomethanol production from gasification of non-woody plant in South Africa: Optimum scale and economic performance," Energy Policy, Elsevier, vol. 38(1), pages 312-322, January.
- Hoefnagels, Ric & Banse, Martin & Dornburg, Veronika & Faaij, André, 2013. "Macro-economic impact of large-scale deployment of biomass resources for energy and materials on a national level—A combined approach for the Netherlands," Energy Policy, Elsevier, vol. 59(C), pages 727-744.
- Im-orb, Karittha & Simasatitkul, Lida & Arpornwichanop, Amornchai, 2016. "Techno-economic analysis of the biomass gasification and Fischer–Tropsch integrated process with off-gas recirculation," Energy, Elsevier, vol. 94(C), pages 483-496.
- Lu, Ke-Miao & Lee, Wen-Jhy & Chen, Wei-Hsin & Lin, Ta-Chang, 2013. "Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends," Applied Energy, Elsevier, vol. 105(C), pages 57-65.
- Damartzis, T. & Zabaniotou, A., 2011. "Thermochemical conversion of biomass to second generation biofuels through integrated process design--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 366-378, January.
- Lazzaretto, Andrea & Morandin, Matteo & Toffolo, Andrea, 2012. "Methodological aspects in synthesis of combined sugar and ethanol production plant," Energy, Elsevier, vol. 41(1), pages 165-174.
- Gassner, Martin & Maréchal, François, 2009. "Thermodynamic comparison of the FICFB and Viking gasification concepts," Energy, Elsevier, vol. 34(10), pages 1744-1753.
- Teng, Su & Hamrang, Farzad & Ashraf Talesh, Seyed Saman, 2021. "Economic performance assessment of a novel combined power generation cycle," Energy, Elsevier, vol. 231(C).
More about this item
Keywords
Hydrothermal biomass gasification; Hybrid cycle; SOFC; Process design; Process integration; Optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:41:y:2012:i:1:p:408-419. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.