IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i5p2894-2906.html
   My bibliography  Save this article

Ecological efficiency and thermoeconomic analysis of a cogeneration system at a hospital

Author

Listed:
  • Silveira, Jose Luz
  • Lamas, Wendell de Queiroz
  • Tuna, Celso Eduardo
  • Villela, Iraides Aparecida de Castro
  • Miro, Laura Siso

Abstract

This work aims with an approach for cogeneration plants evaluation based on thermoeconomic functional diagram analysis. The second law of thermodynamics is used to develop a methodology to analyse cogeneration systems, based on exergoeconomics evaluation. The thermoeconomic optimisation method developed is applied to allow a better configuration of the cogeneration plant associated to a university hospital. Also ecological efficiency is evaluated. The method was efficient and contributes for thermoeconomics modelling and analysis and can be applied to any sort of thermal system, especially those with combined heat and power in thermal parity.

Suggested Citation

  • Silveira, Jose Luz & Lamas, Wendell de Queiroz & Tuna, Celso Eduardo & Villela, Iraides Aparecida de Castro & Miro, Laura Siso, 2012. "Ecological efficiency and thermoeconomic analysis of a cogeneration system at a hospital," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2894-2906.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:5:p:2894-2906
    DOI: 10.1016/j.rser.2012.02.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112001001
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.02.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lazzaretto, Andrea & Tsatsaronis, George, 2006. "SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems," Energy, Elsevier, vol. 31(8), pages 1257-1289.
    2. Silveira, José Luz & de Carvalho, João Jr. & de Castro Villela, Iraídes Aparecida, 2007. "Combined cycle versus one thousand diesel power plants: pollutant emissions, ecological efficiency and economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 524-535, April.
    3. Tsatsaronis, George & Kapanke, Kerstin & María Blanco Marigorta, Ana, 2008. "Exergoeconomic estimates for a novel zero-emission process generating hydrogen and electric power," Energy, Elsevier, vol. 33(2), pages 321-330.
    4. Frangopoulos, Christos A. & Nakos, Lambros G., 2006. "Development of a model for thermoeconomic design and operation optimization of a PEM fuel cell system," Energy, Elsevier, vol. 31(10), pages 1501-1519.
    5. Szargut, Jan, 1980. "International progress in second law analysis," Energy, Elsevier, vol. 5(8), pages 709-718.
    6. Dimopoulos, George G. & Kougioufas, Aristotelis V. & Frangopoulos, Christos A., 2008. "Synthesis, design and operation optimization of a marine energy system," Energy, Elsevier, vol. 33(2), pages 180-188.
    7. Franzoni, A. & Magistri, L. & Traverso, A. & Massardo, A.F., 2008. "Thermoeconomic analysis of pressurized hybrid SOFC systems with CO2 separation," Energy, Elsevier, vol. 33(2), pages 311-320.
    8. Frangopoulos, Christos A. & Dimopoulos, George G., 2004. "Effect of reliability considerations on the optimal synthesis, design and operation of a cogeneration system," Energy, Elsevier, vol. 29(3), pages 309-329.
    9. Tsatsaronis, George, 2007. "Definitions and nomenclature in exergy analysis and exergoeconomics," Energy, Elsevier, vol. 32(4), pages 249-253.
    10. Paulus, David M. & Tsatsaronis, George, 2006. "Auxiliary equations for the determination of specific exergy revenues," Energy, Elsevier, vol. 31(15), pages 3235-3247.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Braga, Lúcia Bollini & Silveira, Jose Luz & da Silva, Marcio Evaristo & Tuna, Celso Eduardo & Machin, Einara Blanco & Pedroso, Daniel Travieso, 2013. "Hydrogen production by biogas steam reforming: A technical, economic and ecological analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 166-173.
    2. Lamas, Wendell de Queiroz & Palau, Jose Carlos Fortes & Camargo, Jose Rubens de, 2013. "Waste materials co-processing in cement industry: Ecological efficiency of waste reuse," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 200-207.
    3. Najjar, Yousef S.H. & Al-Absi, Suhayb, 2013. "Thermoeconomic optimization for green multi-shaft gas turbine engines," Energy, Elsevier, vol. 56(C), pages 39-45.
    4. de Souza, Sergio Alencar & Lamas, Wendell de Queiroz, 2014. "Thermoeconomic and ecological analysis applied to heating industrial process in chemical reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 96-107.
    5. Cicea, Claudiu & Marinescu, Corina & Popa, Ion & Dobrin, Cosmin, 2014. "Environmental efficiency of investments in renewable energy: Comparative analysis at macroeconomic level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 555-564.
    6. Maria Psillaki & Nikolaos Apostolopoulos & Ilias Makris & Panagiotis Liargovas & Sotiris Apostolopoulos & Panos Dimitrakopoulos & George Sklias, 2023. "Hospitals’ Energy Efficiency in the Perspective of Saving Resources and Providing Quality Services through Technological Options: A Systematic Literature Review," Energies, MDPI, vol. 16(2), pages 1-21, January.
    7. Proenza Pérez, Nestor & Titosse Sadamitsu, Marlene & Luz Silveira, Jose & Santana Antunes, Julio & Eduardo Tuna, Celso & Erazo Valle, Atilio & Faria Silva, Natalia, 2015. "Energetic and exergetic analysis of a new compact trigeneration system run with liquefied petroleum gas," Energy, Elsevier, vol. 90(P2), pages 1411-1419.
    8. Waheed, M.A. & Oni, A.O. & Adejuyigbe, S.B. & Adewumi, B.A. & Fadare, D.A., 2014. "Performance enhancement of vapor recompression heat pump," Applied Energy, Elsevier, vol. 114(C), pages 69-79.
    9. Bargos, Fabiano Fernandes & Lamas, Wendell de Queiróz & Bilato, Gabriel Adam, 2018. "Computational tools and operational research for optimal design of co-generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 507-516.
    10. Isa, Normazlina Mat & Tan, Chee Wei & Yatim, A.H.M., 2018. "A comprehensive review of cogeneration system in a microgrid: A perspective from architecture and operating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2236-2263.
    11. Brizi, Federico & Silveira, Jose Luz & Desideri, Umberto & Reis, Joaquim Antonio dos & Tuna, Celso Eduardo & Lamas, Wendell de Queiroz, 2014. "Energetic and economic analysis of a Brazilian compact cogeneration system: Comparison between natural gas and biogas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 193-211.
    12. Ranjan, K.R. & Kaushik, S.C., 2013. "Energy, exergy and thermo-economic analysis of solar distillation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 709-723.
    13. Aikaterini Papadimitriou & Vassilios Vassiliou & Kalliopi Tataraki & Eugenia Giannini & Zacharias Maroulis, 2020. "Economic Assessment of Cogeneration Systems in Operation," Energies, MDPI, vol. 13(9), pages 1-15, May.
    14. Woo, Chungwon & Chung, Yanghon & Chun, Dongphil & Seo, Hangyeol & Hong, Sungjun, 2015. "The static and dynamic environmental efficiency of renewable energy: A Malmquist index analysis of OECD countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 367-376.
    15. Lamas, Wendell de Queiroz, 2013. "Fuzzy thermoeconomic optimisation applied to a small waste water treatment plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 214-219.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Souza, Sergio Alencar & Lamas, Wendell de Queiroz, 2014. "Thermoeconomic and ecological analysis applied to heating industrial process in chemical reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 96-107.
    2. Lamas, Wendell de Queiroz, 2013. "Fuzzy thermoeconomic optimisation applied to a small waste water treatment plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 214-219.
    3. Lamas, Wendell de Queiroz & Silveira, Jose Luz & Oscare Giacaglia, Giorgio Eugenio & Mattos dos Reis, Luiz Octavio, 2010. "Thermoeconomic analysis applied to an alternative wastewater treatment," Renewable Energy, Elsevier, vol. 35(10), pages 2288-2296.
    4. Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2018. "Exergetic and exergoeconomic evaluation of an SOFC-Engine hybrid power generation system," Energy, Elsevier, vol. 145(C), pages 810-822.
    5. Abusoglu, Aysegul & Kanoglu, Mehmet, 2009. "Exergoeconomic analysis and optimization of combined heat and power production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2295-2308, December.
    6. Querol, E. & Gonzalez-Regueral, B. & Ramos, A. & Perez-Benedito, J.L., 2011. "Novel application for exergy and thermoeconomic analysis of processes simulated with Aspen Plus®," Energy, Elsevier, vol. 36(2), pages 964-974.
    7. Ligang Wang & Yongping Yang & Changqing Dong & Zhiping Yang & Gang Xu & Lingnan Wu, 2012. "Exergoeconomic Evaluation of a Modern Ultra-Supercritical Power Plant," Energies, MDPI, vol. 5(9), pages 1-17, September.
    8. Tsatsaronis, George & Morosuk, Tatiana & Koch, Daniela & Sorgenfrei, Max, 2013. "Understanding the thermodynamic inefficiencies in combustion processes," Energy, Elsevier, vol. 62(C), pages 3-11.
    9. Frangopoulos, Christos A., 2018. "Recent developments and trends in optimization of energy systems," Energy, Elsevier, vol. 164(C), pages 1011-1020.
    10. Sayadi, Saeed & Tsatsaronis, George & Duelk, Christian, 2014. "Exergoeconomic analysis of vehicular PEM (proton exchange membrane) fuel cell systems with and without expander," Energy, Elsevier, vol. 77(C), pages 608-622.
    11. Nguyen, Tuong-Van & Voldsund, Mari & Elmegaard, Brian & Ertesvåg, Ivar Ståle & Kjelstrup, Signe, 2014. "On the definition of exergy efficiencies for petroleum systems: Application to offshore oil and gas processing," Energy, Elsevier, vol. 73(C), pages 264-281.
    12. Picallo-Perez, Ana & Catrini, Pietro & Piacentino, Antonio & Sala, José-Mª, 2019. "A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems," Energy, Elsevier, vol. 180(C), pages 819-837.
    13. Aygun, Hakan & Turan, Onder, 2021. "Exergo-economic analysis of off-design a target drone engine for reconnaissance mission flight," Energy, Elsevier, vol. 224(C).
    14. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    15. Mohammadkhani, F. & Shokati, N. & Mahmoudi, S.M.S. & Yari, M. & Rosen, M.A., 2014. "Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles," Energy, Elsevier, vol. 65(C), pages 533-543.
    16. Manassaldi, Juan I. & Mussati, Sergio F. & Scenna, Nicolás J., 2011. "Optimal synthesis and design of Heat Recovery Steam Generation (HRSG) via mathematical programming," Energy, Elsevier, vol. 36(1), pages 475-485.
    17. Bagdanavicius, Audrius & Jenkins, Nick & Hammond, Geoffrey P., 2012. "Assessment of community energy supply systems using energy, exergy and exergoeconomic analysis," Energy, Elsevier, vol. 45(1), pages 247-255.
    18. Naser Shokati & Farzad Mohammadkhani & Mortaza Yari & Seyed M. S. Mahmoudi & Marc A. Rosen, 2014. "A Comparative Exergoeconomic Analysis of Waste Heat Recovery from a Gas Turbine-Modular Helium Reactor via Organic Rankine Cycles," Sustainability, MDPI, vol. 6(5), pages 1-16, April.
    19. Hofmann, Mathias & Tsatsaronis, George, 2018. "Comparative exergoeconomic assessment of coal-fired power plants – Binary Rankine cycle versus conventional steam cycle," Energy, Elsevier, vol. 142(C), pages 168-179.
    20. Diana L. Tinoco-Caicedo & Alexis Lozano-Medina & Ana M. Blanco-Marigorta, 2020. "Conventional and Advanced Exergy and Exergoeconomic Analysis of a Spray Drying System: A Case Study of an Instant Coffee Factory in Ecuador," Energies, MDPI, vol. 13(21), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:5:p:2894-2906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.