A comprehensive review on high-temperature fuel cells with carbon capture
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2020.115342
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Timurkutluk, Bora & Timurkutluk, Cigdem & Mat, Mahmut D. & Kaplan, Yuksel, 2016. "A review on cell/stack designs for high performance solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1101-1121.
- Abbasi, Tasneem & Abbasi, S.A., 2011. "Decarbonization of fossil fuels as a strategy to control global warming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1828-1834, May.
- Wee, Jung-Ho, 2014. "Carbon dioxide emission reduction using molten carbonate fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 178-191.
- Siefert, Nicholas S. & Litster, Shawn, 2013. "Exergy and economic analyses of advanced IGCC–CCS and IGFC–CCS power plants," Applied Energy, Elsevier, vol. 107(C), pages 315-328.
- Duan, Liqiang & Xia, Kun & Feng, Tao & Jia, Shilun & Bian, Jing, 2016. "Study on coal-fired power plant with CO2 capture by integrating molten carbonate fuel cell system," Energy, Elsevier, vol. 117(P2), pages 578-589.
- Wee, Jung-Ho, 2010. "Contribution of fuel cell systems to CO2 emission reduction in their application fields," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 735-744, February.
- Eveloy, Valerie, 2019. "Hybridization of solid oxide electrolysis-based power-to-methane with oxyfuel combustion and carbon dioxide utilization for energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 550-571.
- Jeong, Ji Hun & Ahn, Ji Ho & Kim, Tong Seop, 2019. "Application of ITM to improve the efficiency of SOFC/GTCC triple combined cycle with carbon capture," Energy, Elsevier, vol. 182(C), pages 1141-1153.
- Diglio, Giuseppe & Bareschino, Piero & Mancusi, Erasmo & Pepe, Francesco & Montagnaro, Fabio & Hanak, Dawid P. & Manovic, Vasilije, 2018. "Feasibility of CaO/CuO/NiO sorption-enhanced steam methane reforming integrated with solid-oxide fuel cell for near-zero-CO2 emissions cogeneration system," Applied Energy, Elsevier, vol. 230(C), pages 241-256.
- Song, Chunfeng & Liu, Qingling & Deng, Shuai & Li, Hailong & Kitamura, Yutaka, 2019. "Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 265-278.
- Li, Mu & Rao, Ashok D. & Scott Samuelsen, G., 2012. "Performance and costs of advanced sustainable central power plants with CCS and H2 co-production," Applied Energy, Elsevier, vol. 91(1), pages 43-50.
- Duan, Liqiang & Yue, Long & Qu, Wanjun & Yang, Yongping, 2015. "Study on CO2 capture from molten carbonate fuel cell hybrid system integrated with oxygen ion transfer membrane," Energy, Elsevier, vol. 93(P1), pages 20-30.
- Nykvist, Björn, 2013. "Ten times more difficult: Quantifying the carbon capture and storage challenge," Energy Policy, Elsevier, vol. 55(C), pages 683-689.
- Wang, Fu & Zhao, Jun & Zhang, Houcheng & Miao, He & Zhao, Jiapei & Wang, Jiatang & Yuan, Jinliang & Yan, Jinyue, 2018. "Efficiency evaluation of a coal-fired power plant integrated with chilled ammonia process using an absorption refrigerator," Applied Energy, Elsevier, vol. 230(C), pages 267-276.
- Falcucci, G. & Jannelli, E. & Minutillo, M. & Ubertini, S. & Han, J. & Yoon, S.P. & Nam, S.W., 2012. "Integrated numerical and experimental study of a MCFC-plasma gasifier energy system," Applied Energy, Elsevier, vol. 97(C), pages 734-742.
- Chen, Shiyi & Lior, Noam & Xiang, Wenguo, 2015. "Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture," Applied Energy, Elsevier, vol. 146(C), pages 298-312.
- Campanari, Stefano & Manzolini, Giampaolo & Chiesa, Paolo, 2013. "Using MCFC for high efficiency CO2 capture from natural gas combined cycles: Comparison of internal and external reforming," Applied Energy, Elsevier, vol. 112(C), pages 772-783.
- Lokey, Elizabeth, 2009. "Valuation of Carbon Capture and Sequestration under Greenhouse Gas Regulations," The Electricity Journal, Elsevier, vol. 22(4), pages 11-24, May.
- Tan, Luzhi & Dong, Xiaoming & Gong, Zhiqiang & Wang, Mingtao, 2017. "Investigation on performance of an integrated SOFC-GE-KC power generation system using gaseous fuel from biomass gasification," Renewable Energy, Elsevier, vol. 107(C), pages 448-461.
- Campanari, S. & Chiesa, P. & Manzolini, G. & Bedogni, S., 2014. "Economic analysis of CO2 capture from natural gas combined cycles using Molten Carbonate Fuel Cells," Applied Energy, Elsevier, vol. 130(C), pages 562-573.
- Wang, Fu & Deng, Shuai & Zhao, Jun & Wang, Junyao & Sun, Taiwei & Yan, Jinyue, 2017. "Performance and economic assessments of integrating geothermal energy into coal-fired power plant with CO2 capture," Energy, Elsevier, vol. 119(C), pages 278-287.
- Park, Sung Ku & Kim, Tong Seop & Sohn, Jeong L. & Lee, Young Duk, 2011. "An integrated power generation system combining solid oxide fuel cell and oxy-fuel combustion for high performance and CO2 capture," Applied Energy, Elsevier, vol. 88(4), pages 1187-1196, April.
- Wang, Fu & Zhao, Jun & Miao, He & Zhao, Jiapei & Zhang, Houcheng & Yuan, Jinliang & Yan, Jinyue, 2018. "Current status and challenges of the ammonia escape inhibition technologies in ammonia-based CO2 capture process," Applied Energy, Elsevier, vol. 230(C), pages 734-749.
- Amorelli, A & Wilkinson, M.B & Bedont, P & Capobianco, P & Marcenaro, B & Parodi, F & Torazza, A, 2004. "An experimental investigation into the use of molten carbonate fuel cells to capture CO2 from gas turbine exhaust gases," Energy, Elsevier, vol. 29(9), pages 1279-1284.
- Duan, Liqiang & Sun, Siyu & Yue, Long & Qu, Wanjun & Yang, Yongping, 2015. "Study on a new IGCC (Integrated Gasification Combined Cycle) system with CO2 capture by integrating MCFC (Molten Carbonate Fuel Cell)," Energy, Elsevier, vol. 87(C), pages 490-503.
- Mehrpooya, Mehdi & Sharifzadeh, Mohammad Mehdi Moftakhari, 2017. "Conceptual and basic design of a novel integrated cogeneration power plant energy system," Energy, Elsevier, vol. 127(C), pages 516-533.
- Zhang, Houcheng & Xu, Haoran & Chen, Bin & Dong, Feifei & Ni, Meng, 2017. "Two-stage thermoelectric generators for waste heat recovery from solid oxide fuel cells," Energy, Elsevier, vol. 132(C), pages 280-288.
- Petrakopoulou, Fontina & Lee, Young Duk & Tsatsaronis, George, 2014. "Simulation and exergetic evaluation of CO2 capture in a solid-oxide fuel-cell combined-cycle power plant," Applied Energy, Elsevier, vol. 114(C), pages 417-425.
- Franzoni, A. & Magistri, L. & Traverso, A. & Massardo, A.F., 2008. "Thermoeconomic analysis of pressurized hybrid SOFC systems with CO2 separation," Energy, Elsevier, vol. 33(2), pages 311-320.
- Duan, Liqiang & Yue, Long & Feng, Tao & Lu, Hao & Bian, Jing, 2016. "Study on a novel pressurized MCFC hybrid system with CO2 capture," Energy, Elsevier, vol. 109(C), pages 737-750.
- Duan, Liqiang & Zhu, Jingnan & Yue, Long & Yang, Yongping, 2014. "Study on a gas-steam combined cycle system with CO2 capture by integrating molten carbonate fuel cell," Energy, Elsevier, vol. 74(C), pages 417-427.
- Park, Sung Ku & Ahn, Ji-Ho & Kim, Tong Seop, 2011. "Performance evaluation of integrated gasification solid oxide fuel cell/gas turbine systems including carbon dioxide capture," Applied Energy, Elsevier, vol. 88(9), pages 2976-2987.
- Goto, Kazuya & Yogo, Katsunori & Higashii, Takayuki, 2013. "A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture," Applied Energy, Elsevier, vol. 111(C), pages 710-720.
- Duan, Liqiang & Huang, Kexin & Zhang, Xiaoyuan & Yang, Yongping, 2013. "Comparison study on different SOFC hybrid systems with zero-CO2 emission," Energy, Elsevier, vol. 58(C), pages 66-77.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Scaccabarozzi, R. & Gatti, M. & Campanari, S. & Martelli, E., 2021. "Solid oxide semi-closed CO2 cycle: A hybrid power cycle with 75% net efficiency and zero emissions," Applied Energy, Elsevier, vol. 290(C).
- Jing Bian & Liqiang Duan & Yongping Yang, 2023. "Simulation and Economic Investigation of CO 2 Separation from Gas Turbine Exhaust Gas by Molten Carbonate Fuel Cell with Exhaust Gas Recirculation and Selective Exhaust Gas Recirculation," Energies, MDPI, vol. 16(8), pages 1-21, April.
- Yaping Wu & Xiaolong Wu & Yuanwu Xu & Yongjun Cheng & Xi Li, 2023. "A Novel Adaptive Neural Network-Based Thermoelectric Parameter Prediction Method for Enhancing Solid Oxide Fuel Cell System Efficiency," Sustainability, MDPI, vol. 15(19), pages 1-17, September.
- Nhuchhen, Daya R. & Sit, Song P. & Layzell, David B., 2022. "Towards net-zero emission cement and power production using Molten Carbonate Fuel Cells," Applied Energy, Elsevier, vol. 306(PB).
- Singh, Surinder P. & Ohara, Brandon & Ku, Anthony Y., 2021. "Prospects for cost-competitive integrated gasification fuel cell systems," Applied Energy, Elsevier, vol. 290(C).
- Guido Busca, 2024. "Critical Aspects of Energetic Transition Technologies and the Roles of Materials Chemistry and Engineering," Energies, MDPI, vol. 17(14), pages 1-32, July.
- Montazerinejad, H. & Eicker, U., 2022. "Recent development of heat and power generation using renewable fuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
- Perčić, Maja & Vladimir, Nikola & Jovanović, Ivana & Koričan, Marija, 2022. "Application of fuel cells with zero-carbon fuels in short-sea shipping," Applied Energy, Elsevier, vol. 309(C).
- Baccioli, Andrea & Liponi, Angelica & Milewski, Jarosław & Szczęśniak, Arkadiusz & Desideri, Umberto, 2021. "Hybridization of an internal combustion engine with a molten carbonate fuel cell for marine applications," Applied Energy, Elsevier, vol. 298(C).
- Barckholtz, Timothy A. & Taylor, Kevin M. & Narayanan, Sundar & Jolly, Stephen & Ghezel-Ayagh, Hossein, 2022. "Molten carbonate fuel cells for simultaneous CO2 capture, power generation, and H2 generation," Applied Energy, Elsevier, vol. 313(C).
- Qu, Wanjun & Wu, Haifeng & Liu, Taixiu & Zhang, Jing & Peng, Kewen & Yue, Long & Duan, Liqiang, 2024. "Study on the carbon migration from fossil fuel to liquid methanol by integrating solar energy into the advanced power system," Energy, Elsevier, vol. 306(C).
- Nhuchhen, Daya R., 2023. "Integrated gasification carbon capture plant using molten carbonate fuel cell: An application to a cement industry," Energy, Elsevier, vol. 282(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Duan, Liqiang & Yue, Long & Feng, Tao & Lu, Hao & Bian, Jing, 2016. "Study on a novel pressurized MCFC hybrid system with CO2 capture," Energy, Elsevier, vol. 109(C), pages 737-750.
- Ahn, Ji Ho & Seo, Min Hyung & Kim, Tong Seop, 2021. "Efficiency maximization of a quadruple power generation system with zero carbon emission," Energy, Elsevier, vol. 226(C).
- Nhuchhen, Daya R. & Sit, Song P. & Layzell, David B., 2022. "Towards net-zero emission cement and power production using Molten Carbonate Fuel Cells," Applied Energy, Elsevier, vol. 306(PB).
- Ahn, Ji Ho & Kim, Tong Seop, 2020. "Effect of oxygen supply method on the performance of a micro gas turbine-based triple combined cycle with oxy-combustion carbon capture," Energy, Elsevier, vol. 211(C).
- Barckholtz, Timothy A. & Taylor, Kevin M. & Narayanan, Sundar & Jolly, Stephen & Ghezel-Ayagh, Hossein, 2022. "Molten carbonate fuel cells for simultaneous CO2 capture, power generation, and H2 generation," Applied Energy, Elsevier, vol. 313(C).
- Chen, Shiyi & Lior, Noam & Xiang, Wenguo, 2015. "Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture," Applied Energy, Elsevier, vol. 146(C), pages 298-312.
- Chen, Shiyi & Zhou, Nan & Wu, Mudi & Chen, Shubo & Xiang, Wenguo, 2022. "Integration of molten carbonate fuel cell and chemical looping air separation for high-efficient power generation and CO2 capture," Energy, Elsevier, vol. 254(PA).
- Wee, Jung-Ho, 2011. "Molten carbonate fuel cell and gas turbine hybrid systems as distributed energy resources," Applied Energy, Elsevier, vol. 88(12), pages 4252-4263.
- Duan, Liqiang & Sun, Siyu & Yue, Long & Qu, Wanjun & Yang, Yongping, 2015. "Study on a new IGCC (Integrated Gasification Combined Cycle) system with CO2 capture by integrating MCFC (Molten Carbonate Fuel Cell)," Energy, Elsevier, vol. 87(C), pages 490-503.
- Nhuchhen, Daya R., 2023. "Integrated gasification carbon capture plant using molten carbonate fuel cell: An application to a cement industry," Energy, Elsevier, vol. 282(C).
- Jing Bian & Liqiang Duan & Yongping Yang, 2023. "Simulation and Economic Investigation of CO 2 Separation from Gas Turbine Exhaust Gas by Molten Carbonate Fuel Cell with Exhaust Gas Recirculation and Selective Exhaust Gas Recirculation," Energies, MDPI, vol. 16(8), pages 1-21, April.
- Szczęśniak, Arkadiusz & Milewski, Jarosław & Szabłowski, Łukasz & Bujalski, Wojciech & Dybiński, Olaf, 2020. "Dynamic model of a molten carbonate fuel cell 1 kW stack," Energy, Elsevier, vol. 200(C).
- Duan, Liqiang & Lu, Hao & Yuan, Mingye & Lv, Zhipeng, 2018. "Optimization and part-load performance analysis of MCFC/ST hybrid power system," Energy, Elsevier, vol. 152(C), pages 682-693.
- Duan, Liqiang & Zhu, Jingnan & Yue, Long & Yang, Yongping, 2014. "Study on a gas-steam combined cycle system with CO2 capture by integrating molten carbonate fuel cell," Energy, Elsevier, vol. 74(C), pages 417-427.
- Chen, Yanbo & Luo, Yu & Shi, Yixiang & Cai, Ningsheng, 2020. "Theoretical modeling of a pressurized tubular reversible solid oxide cell for methane production by co-electrolysis," Applied Energy, Elsevier, vol. 268(C).
- Duan, Liqiang & Xia, Kun & Feng, Tao & Jia, Shilun & Bian, Jing, 2016. "Study on coal-fired power plant with CO2 capture by integrating molten carbonate fuel cell system," Energy, Elsevier, vol. 117(P2), pages 578-589.
- Gür, Turgut M., 2020. "Perspectives on oxygen-based coal conversion towards zero-carbon power generation," Energy, Elsevier, vol. 196(C).
- Bahram Ghorbani, 2021. "Development of an Integrated Structure for the Tri-Generation of Power, Liquid Carbon Dioxide, and Medium Pressure Steam Using a Molten Carbonate Fuel Cell, a Dual Pressure Linde-Hampson Liquefaction ," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
- McLarty, Dustin & Brouwer, Jack, 2014. "Poly-generating closed cathode fuel cell with carbon capture," Applied Energy, Elsevier, vol. 131(C), pages 108-116.
- Zaman, Sk Arafat & Ghosh, Sudip, 2024. "Novel integration of molten carbonate fuel cell stacks in a biomass-based Rankine cycle power plant with CO2 separation: A techno-economic and environmental study," Energy, Elsevier, vol. 307(C).
More about this item
Keywords
Carbon capture; Molten carbonate fuel cell; Solid oxide fuel cell; Direct carbon fuel cell; Power plant; Hybrid cycle;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:275:y:2020:i:c:s0306261920308540. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.