IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v44y2012i1p126-134.html
   My bibliography  Save this article

Optimization of Korean energy planning for sustainability considering uncertainties in learning rates and external factors

Author

Listed:
  • Kim, Seunghyok
  • Koo, Jamin
  • Lee, Chang Jun
  • Yoon, En Sup

Abstract

During the last few decades, energy planning has focused on meeting domestic demand at lower total costs. However, global warming and the shared recognition of it have transformed the problem of energy planning into a more complex task with a greater number of issues to be considered. Since the key issue is to reduce greenhouse effects, governments around the world have begun to make investments in renewable energy systems (e.g., hydro, wind, solar, and/or biomass power). The relatively high costs of renewable energy systems and the uncertain outlook of their rate of diffusion in the market make it difficult to heavily rely on them. The uncertain variations in production cost over time are especially challenging. To handle uncertainties, the concept of the learning rate was adopted in this study so as to compute the costs of energy systems in the future and Monte Carlo simulation was performed.

Suggested Citation

  • Kim, Seunghyok & Koo, Jamin & Lee, Chang Jun & Yoon, En Sup, 2012. "Optimization of Korean energy planning for sustainability considering uncertainties in learning rates and external factors," Energy, Elsevier, vol. 44(1), pages 126-134.
  • Handle: RePEc:eee:energy:v:44:y:2012:i:1:p:126-134
    DOI: 10.1016/j.energy.2012.02.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212001764
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.02.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brandt, Adam R. & Plevin, Richard J. & Farrell, Alexander E., 2010. "Dynamics of the oil transition: Modeling capacity, depletion, and emissions," Energy, Elsevier, vol. 35(7), pages 2852-2860.
    2. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
    3. Streimikiene, Dalia, 2010. "Comparative assessment of future power generation technologies based on carbon price development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1283-1292, May.
    4. Kydes, Andy S. & Rabinowitz, Joseph, 1981. "Overview and special features of the time-stepped energy system optimization model (TESOM)," Resources and Energy, Elsevier, vol. 3(1), pages 65-92, March.
    5. Chatzimouratidis, Athanasios I. & Pilavachi, Petros A., 2009. "Sensitivity analysis of technological, economic and sustainability evaluation of power plants using the analytic hierarchy process," Energy Policy, Elsevier, vol. 37(3), pages 788-798, March.
    6. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    7. Kanudia, Amit & Loulou, Richard, 1998. "Robust responses to climate change via stochastic MARKAL: The case of Quebec," European Journal of Operational Research, Elsevier, vol. 106(1), pages 15-30, April.
    8. Winkler, Harald & Hughes, Alison & Haw, Mary, 2009. "Technology learning for renewable energy: Implications for South Africa's long-term mitigation scenarios," Energy Policy, Elsevier, vol. 37(11), pages 4987-4996, November.
    9. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Lin, Q.G. & Tan, Q., 2009. "Community-scale renewable energy systems planning under uncertainty--An interval chance-constrained programming approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 721-735, May.
    10. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    11. Crilly, Damien & Zhelev, Toshko, 2008. "Emissions targeting and planning: An application of CO2 emissions pinch analysis (CEPA) to the Irish electricity generation sector," Energy, Elsevier, vol. 33(10), pages 1498-1507.
    12. Hill, Douglas & Sailor, Vance L. & Fishbone, Leslie G., 1981. "Future U.S. energy technologies: Cost and oil-import tradeoffs," Energy, Elsevier, vol. 6(12), pages 1405-1431.
    13. Yeh, Sonia & Rubin, Edward S., 2007. "A centurial history of technological change and learning curves or pulverized coal-fired utility boilers," Institute of Transportation Studies, Working Paper Series qt96z5s545, Institute of Transportation Studies, UC Davis.
    14. Rubin, Edward S & Taylor, Margaret R & Yeh, Sonia & Hounshell, David A, 2004. "Learning curves for environmental technology and their importance for climate policy analysis," Energy, Elsevier, vol. 29(9), pages 1551-1559.
    15. Söderholm, Patrik & Sundqvist, Thomas, 2007. "Empirical challenges in the use of learning curves for assessing the economic prospects of renewable energy technologies," Renewable Energy, Elsevier, vol. 32(15), pages 2559-2578.
    16. Kaya, Tolga & Kahraman, Cengiz, 2010. "Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul," Energy, Elsevier, vol. 35(6), pages 2517-2527.
    17. Krey, Volker & Martinsen, Dag & Wagner, Hermann-Josef, 2007. "Effects of stochastic energy prices on long-term energy-economic scenarios," Energy, Elsevier, vol. 32(12), pages 2340-2349.
    18. Yeh, Sonia & Rubin, Edward S., 2007. "A centurial history of technological change and learning curves for pulverized coal-fired utility boilers," Energy, Elsevier, vol. 32(10), pages 1996-2005.
    19. Entriken, Robert & Infanger, Gerd, 1990. "5.2 Decomposition and importance sampling for stochastic linear models," Energy, Elsevier, vol. 15(7), pages 645-659.
    20. Spinney, Peter J & Watkins, G Campbell, 1996. "Monte Carlo simulation techniques and electric utility resource decisions," Energy Policy, Elsevier, vol. 24(2), pages 155-163, February.
    21. Yu, Suiran & Tao, Jing, 2009. "Energy efficiency assessment by life cycle simulation of cassava-based fuel ethanol for automotive use in Chinese Guangxi context," Energy, Elsevier, vol. 34(1), pages 22-31.
    22. Cormio, C. & Dicorato, M. & Minoia, A. & Trovato, M., 2003. "A regional energy planning methodology including renewable energy sources and environmental constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(2), pages 99-130, April.
    23. Rout, Ullash K. & Blesl, Markus & Fahl, Ulrich & Remme, Uwe & Voß, Alfred, 2009. "Uncertainty in the learning rates of energy technologies: An experiment in a global multi-regional energy system model," Energy Policy, Elsevier, vol. 37(11), pages 4927-4942, November.
    24. Kobos, Peter H. & Erickson, Jon D. & Drennen, Thomas E., 2006. "Technological learning and renewable energy costs: implications for US renewable energy policy," Energy Policy, Elsevier, vol. 34(13), pages 1645-1658, September.
    25. Yeh, Sonia & Rubin, Edward S., 2007. "A centurial history of technological change and learning curves or pulverized coal-fired utility boilers," Institute of Transportation Studies, Working Paper Series qt1f25b3xq, Institute of Transportation Studies, UC Davis.
    26. Lior, Noam, 2010. "Sustainable energy development: The present (2009) situation and possible paths to the future," Energy, Elsevier, vol. 35(10), pages 3976-3994.
    27. Ferioli, F. & Schoots, K. & van der Zwaan, B.C.C., 2009. "Use and limitations of learning curves for energy technology policy: A component-learning hypothesis," Energy Policy, Elsevier, vol. 37(7), pages 2525-2535, July.
    28. Koo, Jamin & Han, Kyusang & Yoon, En Sup, 2011. "Integration of CCS, emissions trading and volatilities of fuel prices into sustainable energy planning, and its robust optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 665-672, January.
    29. Krukanont, Pongsak & Tezuka, Tetsuo, 2007. "Implications of capacity expansion under uncertainty and value of information: The near-term energy planning of Japan," Energy, Elsevier, vol. 32(10), pages 1809-1824.
    30. Foo, Dominic C.Y. & Tan, Raymond R. & Ng, Denny K.S., 2008. "Carbon and footprint-constrained energy planning using cascade analysis technique," Energy, Elsevier, vol. 33(10), pages 1480-1488.
    31. Xie, Y.L. & Li, Y.P. & Huang, G.H. & Li, Y.F., 2010. "An interval fixed-mix stochastic programming method for greenhouse gas mitigation in energy systems under uncertainty," Energy, Elsevier, vol. 35(12), pages 4627-4644.
    32. Koo, Jamin & Park, Kyungtae & Shin, Dongil & Yoon, En Sup, 2011. "Economic evaluation of renewable energy systems under varying scenarios and its implications to Korea's renewable energy plan," Applied Energy, Elsevier, vol. 88(6), pages 2254-2260, June.
    33. Weigt, Hannes, 2009. "Germany's wind energy: The potential for fossil capacity replacement and cost saving," Applied Energy, Elsevier, vol. 86(10), pages 1857-1863, October.
    34. Tan, Raymond R. & Foo, Dominic C.Y., 2007. "Pinch analysis approach to carbon-constrained energy sector planning," Energy, Elsevier, vol. 32(8), pages 1422-1429.
    35. Nguyen, Hang T. & Nabney, Ian T., 2010. "Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models," Energy, Elsevier, vol. 35(9), pages 3674-3685.
    36. Wang, Jianhui & Zhou, Zhi & Botterud, Audun, 2011. "An evolutionary game approach to analyzing bidding strategies in electricity markets with elastic demand," Energy, Elsevier, vol. 36(5), pages 3459-3467.
    37. Ma, Tieju & Nakamori, Yoshiteru, 2009. "Modeling technological change in energy systems – From optimization to agent-based modeling," Energy, Elsevier, vol. 34(7), pages 873-879.
    38. Pinto, T. & Morais, H. & Oliveira, P. & Vale, Z. & Praça, I. & Ramos, C., 2011. "A new approach for multi-agent coalition formation and management in the scope of electricity markets," Energy, Elsevier, vol. 36(8), pages 5004-5015.
    39. Yeh, Sonia & Rubin, Edward S, 2007. "A centurial history of technological change and learning curves or pulverized coal-fired utility boilers," Institute of Transportation Studies, Working Paper Series qt3zz2w2wr, Institute of Transportation Studies, UC Davis.
    40. Yeh, Sonia & Rubin, Edward, 2007. "A centurial history of technological change and learning curves or pulverized coal-fired utility boilers," Institute of Transportation Studies, Working Paper Series qt4xn4w7rn, Institute of Transportation Studies, UC Davis.
    41. Kim, Sung Hyun & Kim, Tae Heon & Kim, Youngduk & Na, In-Gang, 2001. "Korean energy demand in the new millenium: outlook and policy implications, 2000-2005," Energy Policy, Elsevier, vol. 29(11), pages 899-910, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paulino Martinez-Fernandez & Fernando deLlano-Paz & Anxo Calvo-Silvosa & Isabel Soares, 2019. "Assessing Renewable Energy Sources for Electricity (RES-E) Potential Using a CAPM-Analogous Multi-Stage Model," Energies, MDPI, vol. 12(19), pages 1-20, September.
    2. Zong Woo Geem & Jin-Hong Kim, 2016. "Optimal Energy Mix with Renewable Portfolio Standards in Korea," Sustainability, MDPI, vol. 8(5), pages 1-14, May.
    3. Cristóbal, Jorge & Guillén-Gosálbez, Gonzalo & Kraslawski, Andrzej & Irabien, Angel, 2013. "Stochastic MILP model for optimal timing of investments in CO2 capture technologies under uncertainty in prices," Energy, Elsevier, vol. 54(C), pages 343-351.
    4. Tao, Zhenmin & Moncada, Jorge Andres & Delarue, Erik, 2023. "Exploring the impact of boundedly rational power plant investment decision-making by applying prospect theory," Utilities Policy, Elsevier, vol. 82(C).
    5. Handayani, Kamia & Krozer, Yoram & Filatova, Tatiana, 2019. "From fossil fuels to renewables: An analysis of long-term scenarios considering technological learning," Energy Policy, Elsevier, vol. 127(C), pages 134-146.
    6. Kavousi-Fard, Abdollah & Niknam, Taher, 2014. "Multi-objective stochastic Distribution Feeder Reconfiguration from the reliability point of view," Energy, Elsevier, vol. 64(C), pages 342-354.
    7. Park, Sang Yong & Yun, Bo-Yeong & Yun, Chang Yeol & Lee, Duk Hee & Choi, Dong Gu, 2016. "An analysis of the optimum renewable energy portfolio using the bottom–up model: Focusing on the electricity generation sector in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 319-329.
    8. Demetriou, E. & Hadjistassou, C., 2021. "Can China decarbonize its electricity sector?," Energy Policy, Elsevier, vol. 148(PB).
    9. Koltsaklis, Nikolaos E. & Liu, Pei & Georgiadis, Michael C., 2015. "An integrated stochastic multi-regional long-term energy planning model incorporating autonomous power systems and demand response," Energy, Elsevier, vol. 82(C), pages 865-888.
    10. Yuan, Jiahai & Xu, Yan & Kang, Junjie & Zhang, Xingping & Hu, Zheng, 2014. "Nonlinear integrated resource strategic planning model and case study in China's power sector planning," Energy, Elsevier, vol. 67(C), pages 27-40.
    11. Carlos Roberto de Sousa Costa & Paula Ferreira, 2023. "A Review on the Internalization of Externalities in Electricity Generation Expansion Planning," Energies, MDPI, vol. 16(4), pages 1-19, February.
    12. Moon, Hee Seung & Song, Yong Hyun & Lee, Ji Woo & Hong, Sanghyun & Kim, Eunsung & Kim, Seung Wan, 2024. "Implementation cost of net zero electricity system: Analysis based on Korean national target," Energy Policy, Elsevier, vol. 188(C).
    13. Du, Qunyang & Li, Zhongyuan & Du, Min & Yang, Tianle, 2024. "Government venture capital and innovation performance in alternative energy production: The moderating role of environmental regulation and capital market activity," Energy Economics, Elsevier, vol. 129(C).
    14. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2017. "Risk-based methods for sustainable energy system planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 602-615.
    15. Prasad, Ravita D. & Bansal, R.C. & Raturi, Atul, 2014. "Multi-faceted energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 686-699.
    16. Park, Eunil & Kwon, Sang Jib, 2016. "Renewable electricity generation systems for electric-powered taxis: The case of Daejeon metropolitan city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1466-1474.
    17. Ahn, Joongha & Woo, JongRoul & Lee, Jongsu, 2015. "Optimal allocation of energy sources for sustainable development in South Korea: Focus on the electric power generation industry," Energy Policy, Elsevier, vol. 78(C), pages 78-90.
    18. Juárez-Luna, David & Mosiño, Alejandro, 2024. "Electricity generation portfolios in Mexico: Environmental, economic, and policy implications," Energy Policy, Elsevier, vol. 192(C).
    19. Santos, Maria João & Ferreira, Paula & Araújo, Madalena, 2016. "A methodology to incorporate risk and uncertainty in electricity power planning," Energy, Elsevier, vol. 115(P2), pages 1400-1411.
    20. Jui-Yuan Lee & Han-Fu Lin, 2019. "Multi-Footprint Constrained Energy Sector Planning," Energies, MDPI, vol. 12(12), pages 1-18, June.
    21. Mauleón, Ignacio & Hamoudi, Hamid, 2017. "Photovoltaic and wind cost decrease estimation: Implications for investment analysis," Energy, Elsevier, vol. 137(C), pages 1054-1065.
    22. Soares, João & Borges, Nuno & Fotouhi Ghazvini, Mohammad Ali & Vale, Zita & de Moura Oliveira, P.B., 2016. "Scenario generation for electric vehicles' uncertain behavior in a smart city environment," Energy, Elsevier, vol. 111(C), pages 664-675.
    23. Ioannou, Anastasia & Fuzuli, Gulistiani & Brennan, Feargal & Yudha, Satya Widya & Angus, Andrew, 2019. "Multi-stage stochastic optimization framework for power generation system planning integrating hybrid uncertainty modelling," Energy Economics, Elsevier, vol. 80(C), pages 760-776.
    24. Dongmin Son & Joonrak Kim & Bongju Jeong, 2019. "Optimal Operational Strategy for Power Producers in Korea Considering Renewable Portfolio Standards and Emissions Trading Schemes," Energies, MDPI, vol. 12(9), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
    2. Ahn, Joongha & Woo, JongRoul & Lee, Jongsu, 2015. "Optimal allocation of energy sources for sustainable development in South Korea: Focus on the electric power generation industry," Energy Policy, Elsevier, vol. 78(C), pages 78-90.
    3. Hong, Sungjun & Chung, Yanghon & Woo, Chungwon, 2015. "Scenario analysis for estimating the learning rate of photovoltaic power generation based on learning curve theory in South Korea," Energy, Elsevier, vol. 79(C), pages 80-89.
    4. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    5. Bossink, Bart, 2020. "Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    6. Yeh, Sonia & Rubin, Edward S., 2012. "A review of uncertainties in technology experience curves," Energy Economics, Elsevier, vol. 34(3), pages 762-771.
    7. Sascha Samadi, 2016. "A Review of Factors Influencing the Cost Development of Electricity Generation Technologies," Energies, MDPI, vol. 9(11), pages 1-25, November.
    8. Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    9. Koo, Jamin & Park, Kyungtae & Shin, Dongil & Yoon, En Sup, 2011. "Economic evaluation of renewable energy systems under varying scenarios and its implications to Korea's renewable energy plan," Applied Energy, Elsevier, vol. 88(6), pages 2254-2260, June.
    10. Neij, Lena, 2008. "Cost development of future technologies for power generation--A study based on experience curves and complementary bottom-up assessments," Energy Policy, Elsevier, vol. 36(6), pages 2200-2211, June.
    11. Liu, Qiang & Shi, Minjun & Jiang, Kejun, 2009. "New power generation technology options under the greenhouse gases mitigation scenario in China," Energy Policy, Elsevier, vol. 37(6), pages 2440-2449, June.
    12. Muratori, Matteo & Ledna, Catherine & McJeon, Haewon & Kyle, Page & Patel, Pralit & Kim, Son H. & Wise, Marshall & Kheshgi, Haroon S. & Clarke, Leon E. & Edmonds, Jae, 2017. "Cost of power or power of cost: A U.S. modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 861-874.
    13. Choi, Donghyun & Kim, Yeong Jae, 2023. "Local and global experience curves for lumpy and granular energy technologies," Energy Policy, Elsevier, vol. 174(C).
    14. Li, Sheng & Gao, Lin & Zhang, Xiaosong & Lin, Hu & Jin, Hongguang, 2012. "Evaluation of cost reduction potential for a coal based polygeneration system with CO2 capture," Energy, Elsevier, vol. 45(1), pages 101-106.
    15. Matteson, Schuyler & Williams, Eric, 2015. "Residual learning rates in lead-acid batteries: Effects on emerging technologies," Energy Policy, Elsevier, vol. 85(C), pages 71-79.
    16. Yan Xu & Jiahai Yuan & Jianxiu Wang, 2017. "Learning of Power Technologies in China: Staged Dynamic Two-Factor Modeling and Empirical Evidence," Sustainability, MDPI, vol. 9(5), pages 1-14, May.
    17. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    18. Jindal, Abhinav & Nilakantan, Rahul, 2021. "Falling efficiency levels of Indian coal-fired power plants: A slacks-based analysis," Energy Economics, Elsevier, vol. 93(C).
    19. Kemp, Alexander G. & Sola Kasim, A., 2010. "A futuristic least-cost optimisation model of CO2 transportation and storage in the UK/UK Continental Shelf," Energy Policy, Elsevier, vol. 38(7), pages 3652-3667, July.
    20. Kaminski, Jacek & KudeLko, Mariusz, 2010. "The prospects for hard coal as a fuel for the Polish power sector," Energy Policy, Elsevier, vol. 38(12), pages 7939-7950, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:44:y:2012:i:1:p:126-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.