IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v64y2014icp342-354.html
   My bibliography  Save this article

Multi-objective stochastic Distribution Feeder Reconfiguration from the reliability point of view

Author

Listed:
  • Kavousi-Fard, Abdollah
  • Niknam, Taher

Abstract

The main purpose of this paper is to assess the DFR (Distribution Feeder Reconfiguration) strategy as a costless technique to enhance the reliability of the distribution systems. The objective functions to be investigated are: SAIFI (System Average Interruption Frequency Index), AENS (Average Energy Not Supplied), total active power losses and the total network cost. In order to observe the effect of renewable energy sources on the reliability of the power system, wind power source as a popular type of renewable energy source is also considered in the system. In addition, to make the analysis more reliable, the uncertainty of the forecast error of active and reactive loads, wind speed variations as well as the failure rate and repair rate parameters are modeled though the probabilistic load flow. Since the problem investigated is a type of discrete, nonlinear and non-convex optimization problem, a novel self adaptive modified optimization algorithm based on the BA (bat algorithm) is proposed too. The proposed self adaptive modification method makes use of three sub-modifications to give each bat (solution) a choice of preferences during the optimization process. The efficiency and feasibility of the proposed method are studied through a standard IEEE (Institute of Electrical and Electronics Engineers) test system.

Suggested Citation

  • Kavousi-Fard, Abdollah & Niknam, Taher, 2014. "Multi-objective stochastic Distribution Feeder Reconfiguration from the reliability point of view," Energy, Elsevier, vol. 64(C), pages 342-354.
  • Handle: RePEc:eee:energy:v:64:y:2014:i:c:p:342-354
    DOI: 10.1016/j.energy.2013.08.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213007494
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.08.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammadi, Sirus & Mozafari, Babak & Solimani, Soodabeh & Niknam, Taher, 2013. "An Adaptive Modified Firefly Optimisation Algorithm based on Hong's Point Estimate Method to optimal operation management in a microgrid with consideration of uncertainties," Energy, Elsevier, vol. 51(C), pages 339-348.
    2. Pilevar Djavid, Hani & Jalilian, Alireza, 2010. "Developing a new distribution test system to estimate customer outage costs using accurate and approximate procedures," Energy, Elsevier, vol. 35(3), pages 1300-1311.
    3. Niknam, Taher & Kavousi Fard, Abdollah & Baziar, Aliasghar, 2012. "Multi-objective stochastic distribution feeder reconfiguration problem considering hydrogen and thermal energy production by fuel cell power plants," Energy, Elsevier, vol. 42(1), pages 563-573.
    4. Niknam, Taher & Meymand, Hamed Zeinoddini & Mojarrad, Hasan Doagou, 2011. "An efficient algorithm for multi-objective optimal operation management of distribution network considering fuel cell power plants," Energy, Elsevier, vol. 36(1), pages 119-132.
    5. Niknam, Taher & Taheri, Seyed Iman & Aghaei, Jamshid & Tabatabaei, Sajad & Nayeripour, Majid, 2011. "A modified honey bee mating optimization algorithm for multiobjective placement of renewable energy resources," Applied Energy, Elsevier, vol. 88(12), pages 4817-4830.
    6. Kim, Seunghyok & Koo, Jamin & Lee, Chang Jun & Yoon, En Sup, 2012. "Optimization of Korean energy planning for sustainability considering uncertainties in learning rates and external factors," Energy, Elsevier, vol. 44(1), pages 126-134.
    7. Niknam, Taher & Fard, Abdollah Kavousi & Seifi, Alireza, 2012. "Distribution feeder reconfiguration considering fuel cell/wind/photovoltaic power plants," Renewable Energy, Elsevier, vol. 37(1), pages 213-225.
    8. Catalão, J.P.S. & Pousinho, H.M.I. & Contreras, J., 2012. "Optimal hydro scheduling and offering strategies considering price uncertainty and risk management," Energy, Elsevier, vol. 37(1), pages 237-244.
    9. Niknam, Taher & Meymand, Hamed Zeinoddini & Nayeripour, Majid, 2010. "A practical algorithm for optimal operation management of distribution network including fuel cell power plants," Renewable Energy, Elsevier, vol. 35(8), pages 1696-1714.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tolabi, Hajar Bagheri & Ali, Mohd Hasan & Shahrin Bin Md Ayob, & Rizwan, M., 2014. "Novel hybrid fuzzy-Bees algorithm for optimal feeder multi-objective reconfiguration by considering multiple-distributed generation," Energy, Elsevier, vol. 71(C), pages 507-515.
    2. Tolabi, H.B. & Ara, A. Lashkar & Hosseini, R., 2020. "A new thief and police algorithm and its application in simultaneous reconfiguration with optimal allocation of capacitor and distributed generation units," Energy, Elsevier, vol. 203(C).
    3. Tabatabaee, Sajad & Mortazavi, Seyed Saeedallah & Niknam, Taher, 2017. "Stochastic scheduling of local distribution systems considering high penetration of plug-in electric vehicles and renewable energy sources," Energy, Elsevier, vol. 121(C), pages 480-490.
    4. Khorshidi, Reza & Shabaninia, Faridon & Niknam, Taher, 2016. "A new smart approach for state estimation of distribution grids considering renewable energy sources," Energy, Elsevier, vol. 94(C), pages 29-37.
    5. Mukhopadhyay, Bineeta & Das, Debapriya, 2020. "Multi-objective dynamic and static reconfiguration with optimized allocation of PV-DG and battery energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    6. Syed Ali Abbas Kazmi & Muhammad Khuram Shahzad & Dong Ryeol Shin, 2017. "Multi-Objective Planning Techniques in Distribution Networks: A Composite Review," Energies, MDPI, vol. 10(2), pages 1-44, February.
    7. Abdulaziz Alanazi & Mohana Alanazi, 2022. "Artificial Electric Field Algorithm-Pattern Search for Many-Criteria Networks Reconfiguration Considering Power Quality and Energy Not Supplied," Energies, MDPI, vol. 15(14), pages 1-27, July.
    8. Azizivahed, Ali & Narimani, Hossein & Naderi, Ehsan & Fathi, Mehdi & Narimani, Mohammad Rasoul, 2017. "A hybrid evolutionary algorithm for secure multi-objective distribution feeder reconfiguration," Energy, Elsevier, vol. 138(C), pages 355-373.
    9. Kavousi-Fard, Abdollah & Abbasi, Alireza & Rostami, Mohammad-Amin & Khosravi, Abbas, 2015. "Optimal distribution feeder reconfiguration for increasing the penetration of plug-in electric vehicles and minimizing network costs," Energy, Elsevier, vol. 93(P2), pages 1693-1703.
    10. Esmaeeli, M. & Kazemi, A. & Shayanfar, H.A. & Haghifam, M.-R., 2015. "Multistage distribution substations planning considering reliability and growth of energy demand," Energy, Elsevier, vol. 84(C), pages 357-364.
    11. kianmehr, Ehsan & Nikkhah, Saman & Rabiee, Abbas, 2019. "Multi-objective stochastic model for joint optimal allocation of DG units and network reconfiguration from DG owner’s and DisCo’s perspectives," Renewable Energy, Elsevier, vol. 132(C), pages 471-485.
    12. Sultana, Beenish & Mustafa, M.W. & Sultana, U. & Bhatti, Abdul Rauf, 2016. "Review on reliability improvement and power loss reduction in distribution system via network reconfiguration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 297-310.
    13. Sedighizadeh, Mostafa & Esmaili, Masoud & Esmaeili, Mobin, 2014. "Application of the hybrid Big Bang-Big Crunch algorithm to optimal reconfiguration and distributed generation power allocation in distribution systems," Energy, Elsevier, vol. 76(C), pages 920-930.
    14. Kavousi-Fard, Abdollah & Abunasri, Alireza & Zare, Alireza & Hoseinzadeh, Rasool, 2014. "Impact of plug-in hybrid electric vehicles charging demand on the optimal energy management of renewable micro-grids," Energy, Elsevier, vol. 78(C), pages 904-915.
    15. Mahmoud M. Sayed & Mohamed Y. Mahdy & Shady H. E. Abdel Aleem & Hosam K. M. Youssef & Tarek A. Boghdady, 2022. "Simultaneous Distribution Network Reconfiguration and Optimal Allocation of Renewable-Based Distributed Generators and Shunt Capacitors under Uncertain Conditions," Energies, MDPI, vol. 15(6), pages 1-27, March.
    16. Aghajani, Saemeh & Kalantar, Mohsen, 2017. "Optimal scheduling of distributed energy resources in smart grids: A complementarity approach," Energy, Elsevier, vol. 141(C), pages 2135-2144.
    17. Praveen Agrawal & Neeraj Kanwar & Nikhil Gupta & Khaleequr Rehman Niazi & Anil Swarnkar & Nand K. Meena & Jin Yang, 2020. "Reliability and Network Performance Enhancement by Reconfiguring Underground Distribution Systems," Energies, MDPI, vol. 13(18), pages 1-16, September.
    18. Kavousi-Fard, Abdollah & Khodaei, Amin, 2016. "Efficient integration of plug-in electric vehicles via reconfigurable microgrids," Energy, Elsevier, vol. 111(C), pages 653-663.
    19. Haben, Stephen & Arora, Siddharth & Giasemidis, Georgios & Voss, Marcus & Vukadinović Greetham, Danica, 2021. "Review of low voltage load forecasting: Methods, applications, and recommendations," Applied Energy, Elsevier, vol. 304(C).
    20. Zhao, Jiangbin & Si, Shubin & Cai, Zhiqiang, 2019. "A multi-objective reliability optimization for reconfigurable systems considering components degradation," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 104-115.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abbasi, Ali Reza & Seifi, Ali Reza, 2015. "Considering cost and reliability in electrical and thermal distribution networks reinforcement planning," Energy, Elsevier, vol. 84(C), pages 25-35.
    2. Zare, Mohsen & Niknam, Taher, 2013. "A new multi-objective for environmental and economic management of Volt/Var Control considering renewable energy resources," Energy, Elsevier, vol. 55(C), pages 236-252.
    3. Haddadian, Hossein & Noroozian, Reza, 2017. "Optimal operation of active distribution systems based on microgrid structure," Renewable Energy, Elsevier, vol. 104(C), pages 197-210.
    4. Vahidinasab, Vahid, 2014. "Optimal distributed energy resources planning in a competitive electricity market: Multiobjective optimization and probabilistic design," Renewable Energy, Elsevier, vol. 66(C), pages 354-363.
    5. Ben Christopher, S.J. & Carolin Mabel, M., 2020. "A bio-inspired approach for probabilistic energy management of micro-grid incorporating uncertainty in statistical cost estimation," Energy, Elsevier, vol. 203(C).
    6. Niknam, Taher & Kavousi Fard, Abdollah & Baziar, Aliasghar, 2012. "Multi-objective stochastic distribution feeder reconfiguration problem considering hydrogen and thermal energy production by fuel cell power plants," Energy, Elsevier, vol. 42(1), pages 563-573.
    7. Aghaei, Jamshid & Muttaqi, Kashem M. & Azizivahed, Ali & Gitizadeh, Mohsen, 2014. "Distribution expansion planning considering reliability and security of energy using modified PSO (Particle Swarm Optimization) algorithm," Energy, Elsevier, vol. 65(C), pages 398-411.
    8. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    9. Doagou-Mojarrad, Hasan & Gharehpetian, G.B. & Rastegar, H. & Olamaei, Javad, 2013. "Optimal placement and sizing of DG (distributed generation) units in distribution networks by novel hybrid evolutionary algorithm," Energy, Elsevier, vol. 54(C), pages 129-138.
    10. Elsied, Moataz & Oukaour, Amrane & Gualous, Hamid & Hassan, Radwan, 2015. "Energy management and optimization in microgrid system based on green energy," Energy, Elsevier, vol. 84(C), pages 139-151.
    11. Ebrahim Farjah & Mosayeb Bornapour & Taher Niknam & Bahman Bahmanifirouzi, 2012. "Placement of Combined Heat, Power and Hydrogen Production Fuel Cell Power Plants in a Distribution Network," Energies, MDPI, vol. 5(3), pages 1-25, March.
    12. Azizivahed, Ali & Narimani, Hossein & Naderi, Ehsan & Fathi, Mehdi & Narimani, Mohammad Rasoul, 2017. "A hybrid evolutionary algorithm for secure multi-objective distribution feeder reconfiguration," Energy, Elsevier, vol. 138(C), pages 355-373.
    13. Sedighizadeh, Mostafa & Esmaili, Masoud & Esmaeili, Mobin, 2014. "Application of the hybrid Big Bang-Big Crunch algorithm to optimal reconfiguration and distributed generation power allocation in distribution systems," Energy, Elsevier, vol. 76(C), pages 920-930.
    14. Baziar, Aliasghar & Kavousi-Fard, Abdollah, 2013. "Considering uncertainty in the optimal energy management of renewable micro-grids including storage devices," Renewable Energy, Elsevier, vol. 59(C), pages 158-166.
    15. Iqbal, M. & Azam, M. & Naeem, M. & Khwaja, A.S. & Anpalagan, A., 2014. "Optimization classification, algorithms and tools for renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 640-654.
    16. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "An optimal investment planning framework for multiple distributed generation units in industrial distribution systems," Applied Energy, Elsevier, vol. 124(C), pages 62-72.
    17. Moon, Hee Seung & Song, Yong Hyun & Lee, Ji Woo & Hong, Sanghyun & Kim, Eunsung & Kim, Seung Wan, 2024. "Implementation cost of net zero electricity system: Analysis based on Korean national target," Energy Policy, Elsevier, vol. 188(C).
    18. Jiang, Zhiqiang & Li, Anqiang & Ji, Changming & Qin, Hui & Yu, Shan & Li, Yuanzheng, 2016. "Research and application of key technologies in drawing energy storage operation chart by discriminant coefficient method," Energy, Elsevier, vol. 114(C), pages 774-786.
    19. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    20. Mengjun Ming & Rui Wang & Yabing Zha & Tao Zhang, 2017. "Multi-Objective Optimization of Hybrid Renewable Energy System Using an Enhanced Multi-Objective Evolutionary Algorithm," Energies, MDPI, vol. 10(5), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:64:y:2014:i:c:p:342-354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.