IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v58y2016icp1466-1474.html
   My bibliography  Save this article

Renewable electricity generation systems for electric-powered taxis: The case of Daejeon metropolitan city

Author

Listed:
  • Park, Eunil
  • Kwon, Sang Jib

Abstract

Due to significant social and environmental issues, public transportation is a very influential industry affecting our society and environment. From another perspective, because significant societal problems arise from the use of traditional energy sources such as fossil and nuclear fuels, employing optimized electricity generation systems powered by renewable energy resources is a potential pathway for sustainability while simultaneously minimizing any associated negative environmental effects. Consequently, Daejeon metropolitan city, South Korea, is attempting to introduce electric vehicles (EVs) for local taxis and establish renewable power generation systems. Therefore, the current study explores the use of potential renewable electricity generation systems by local taxi services in Daejeon. Using HOMER (Hybrid Renewable and Distributed Generation System Design) software, systems using solar energy, wind energy, batteries, converters, and the electrical grid are proposed for the third stage of the adoption of electric-powered taxis (EP taxis) in Daejeon. An economic assessment is conducted for renewable electricity generation systems, including the cost of energy (COE) and renewable fractions. Based on the simulations results, the potential system shows a renewable fraction of 0.82 and a COE of 0.425 $/kWh for the most reliable case (with grid connection), 0.79 and 0.180$/kWh for the most optimal case (with grid connection), and 1.00 and 0.461 $/kWh for the most optimal independent case, respectively. Both the implications and limitations of such systems are discussed.

Suggested Citation

  • Park, Eunil & Kwon, Sang Jib, 2016. "Renewable electricity generation systems for electric-powered taxis: The case of Daejeon metropolitan city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1466-1474.
  • Handle: RePEc:eee:rensus:v:58:y:2016:i:c:p:1466-1474
    DOI: 10.1016/j.rser.2015.12.308
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115016913
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.12.308?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sen, Rohit & Bhattacharyya, Subhes C., 2014. "Off-grid electricity generation with renewable energy technologies in India: An application of HOMER," Renewable Energy, Elsevier, vol. 62(C), pages 388-398.
    2. Richardson, David B., 2013. "Electric vehicles and the electric grid: A review of modeling approaches, Impacts, and renewable energy integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 247-254.
    3. Woo-Kyu Chae & Hak-Ju Lee & Jong-Nam Won & Jung-Sung Park & Jae-Eon Kim, 2015. "Design and Field Tests of an Inverted Based Remote MicroGrid on a Korean Island," Energies, MDPI, vol. 8(8), pages 1-18, August.
    4. Park, Eunil & Ohm, Jay Y., 2014. "Factors influencing the public intention to use renewable energy technologies in South Korea: Effects of the Fukushima nuclear accident," Energy Policy, Elsevier, vol. 65(C), pages 198-211.
    5. Dill, Jennifer & Weinstein, Asha, 2007. "How to pay for transportation? A survey of public preferences in California," Transport Policy, Elsevier, vol. 14(4), pages 346-356, July.
    6. Bekele, Getachew & Tadesse, Getnet, 2012. "Feasibility study of small Hydro/PV/Wind hybrid system for off-grid rural electrification in Ethiopia," Applied Energy, Elsevier, vol. 97(C), pages 5-15.
    7. Kyeongsik Yoo & Eunil Park & Heetae Kim & Jay Y. Ohm & Taeyong Yang & Ki Joon Kim & Hyun Joon Chang & Angel P. Del Pobil, 2014. "Optimized Renewable and Sustainable Electricity Generation Systems for Ulleungdo Island in South Korea," Sustainability, MDPI, vol. 6(11), pages 1-11, November.
    8. Mouwen, Arnoud & Rietveld, Piet, 2013. "Does competitive tendering improve customer satisfaction with public transport? A case study for the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 51(C), pages 29-45.
    9. Mwasilu, Francis & Justo, Jackson John & Kim, Eun-Kyung & Do, Ton Duc & Jung, Jin-Woo, 2014. "Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 501-516.
    10. Nandi, Sanjoy Kumar & Ghosh, Himangshu Ranjan, 2009. "A wind-PV-battery hybrid power system at Sitakunda in Bangladesh," Energy Policy, Elsevier, vol. 37(9), pages 3659-3664, September.
    11. Soares M.C. Borba, Bruno & Szklo, Alexandre & Schaeffer, Roberto, 2012. "Plug-in hybrid electric vehicles as a way to maximize the integration of variable renewable energy in power systems: The case of wind generation in northeastern Brazil," Energy, Elsevier, vol. 37(1), pages 469-481.
    12. Kim, Heetae & Park, Eunil & Kwon, Sang Jib & Ohm, Jay Y. & Chang, Hyun Joon, 2014. "An integrated adoption model of solar energy technologies in South Korea," Renewable Energy, Elsevier, vol. 66(C), pages 523-531.
    13. Ashourian, M.H. & Cherati, S.M. & Mohd Zin, A.A. & Niknam, N. & Mokhtar, A.S. & Anwari, M., 2013. "Optimal green energy management for island resorts in Malaysia," Renewable Energy, Elsevier, vol. 51(C), pages 36-45.
    14. Dursun, Bahtiyar, 2012. "Determination of the optimum hybrid renewable power generating systems for Kavakli campus of Kirklareli University, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6183-6190.
    15. Olsson, Lars E. & Friman, Margareta & Pareigis, Jörg & Edvardsson, Bo, 2012. "Measuring service experience: Applying the satisfaction with travel scale in public transport," Journal of Retailing and Consumer Services, Elsevier, vol. 19(4), pages 413-418.
    16. Kim, Seunghyok & Koo, Jamin & Lee, Chang Jun & Yoon, En Sup, 2012. "Optimization of Korean energy planning for sustainability considering uncertainties in learning rates and external factors," Energy, Elsevier, vol. 44(1), pages 126-134.
    17. Barradale, Merrill Jones, 2010. "Impact of public policy uncertainty on renewable energy investment: Wind power and the production tax credit," Energy Policy, Elsevier, vol. 38(12), pages 7698-7709, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. González, L.G. & Siavichay, E. & Espinoza, J.L., 2019. "Impact of EV fast charging stations on the power distribution network of a Latin American intermediate city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 309-318.
    2. Eunil Park & Ki Joon Kim & Sang Jib Kwon & Taeil Han & Wongi S. Na & Angel P. Del Pobil, 2017. "Economic Feasibility of Renewable Electricity Generation Systems for Local Government Office: Evaluation of the Jeju Special Self-Governing Province in South Korea," Sustainability, MDPI, vol. 9(1), pages 1-13, January.
    3. Eunil Park & Taeil Han & Taehyeong Kim & Sang Jib Kwon & Angel P. Del Pobil, 2016. "Economic and Environmental Benefits of Optimized Hybrid Renewable Energy Generation Systems at Jeju National University, South Korea," Sustainability, MDPI, vol. 8(9), pages 1-12, September.
    4. Md Mijanur Rahman & Mohammad Shakeri & Sieh Kiong Tiong & Fatema Khatun & Nowshad Amin & Jagadeesh Pasupuleti & Mohammad Kamrul Hasan, 2021. "Prospective Methodologies in Hybrid Renewable Energy Systems for Energy Prediction Using Artificial Neural Networks," Sustainability, MDPI, vol. 13(4), pages 1-28, February.
    5. Aminu Bugaje & Mathias Ehrenwirth & Christoph Trinkl & Wilfried Zörner, 2021. "Electric Two-Wheeler Vehicle Integration into Rural Off-Grid Photovoltaic System in Kenya," Energies, MDPI, vol. 14(23), pages 1-27, November.
    6. Sajid Ali & Choon-Man Jang, 2020. "Optimum Design of Hybrid Renewable Energy System for Sustainable Energy Supply to a Remote Island," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    7. Park, Eunil, 2017. "Potentiality of renewable resources: Economic feasibility perspectives in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 61-70.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Eunil & Kwon, Sang Jib, 2016. "Solutions for optimizing renewable power generation systems at Kyung-Hee University׳s Global Campus, South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 439-449.
    2. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    3. Heetae Kim & Jinwoo Bae & Seoin Baek & Donggyun Nam & Hyunsung Cho & Hyun Joon Chang, 2017. "Comparative Analysis between the Government Micro-Grid Plan and Computer Simulation Results Based on Real Data: The Practical Case for a South Korean Island," Sustainability, MDPI, vol. 9(2), pages 1-18, January.
    4. Eunil Park & Sang Jib Kwon & Angel P. Del Pobil, 2016. "For a Green Stadium: Economic Feasibility of Sustainable Renewable Electricity Generation at the Jeju World Cup Venue," Sustainability, MDPI, vol. 8(10), pages 1-11, September.
    5. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    6. Sangjib Kwon & Hyungbae Gil & Seoin Baek & Heetae Kim, 2022. "Optimal Solution for a Renewable-Energy-Generation System at a Private Educational Institute in South Korea," Energies, MDPI, vol. 15(24), pages 1-11, December.
    7. Pascasio, Jethro Daniel A. & Esparcia, Eugene A. & Castro, Michael T. & Ocon, Joey D., 2021. "Comparative assessment of solar photovoltaic-wind hybrid energy systems: A case for Philippine off-grid islands," Renewable Energy, Elsevier, vol. 179(C), pages 1589-1607.
    8. Seoin Baek & Heetae Kim & Hyun Joon Chang, 2015. "Optimal Hybrid Renewable Power System for an Emerging Island of South Korea: The Case of Yeongjong Island," Sustainability, MDPI, vol. 7(10), pages 1-17, October.
    9. Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Tan, Kang Miao & Mithulananthan, N., 2015. "A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 365-385.
    10. Ashique, Ratil H. & Salam, Zainal & Bin Abdul Aziz, Mohd Junaidi & Bhatti, Abdul Rauf, 2017. "Integrated photovoltaic-grid dc fast charging system for electric vehicle: A review of the architecture and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1243-1257.
    11. Seoin Baek & Heetae Kim & Hyun Joon Chang, 2016. "Optimal Hybrid Renewable Airport Power System: Empirical Study on Incheon International Airport, South Korea," Sustainability, MDPI, vol. 8(6), pages 1-13, June.
    12. Majbaul Alam & Subhes Bhattacharyya, 2016. "Decentralized Renewable Hybrid Mini-Grids for Sustainable Electrification of the Off-Grid Coastal Areas of Bangladesh," Energies, MDPI, vol. 9(4), pages 1-16, April.
    13. Jinwoo Bae & Soojung Lee & Heetae Kim, 2021. "Comparative study on the economic feasibility of nanogrid and microgrid electrification: The case of Jeju Island, South Korea," Energy & Environment, , vol. 32(1), pages 168-188, February.
    14. Park, Eunil, 2017. "Potentiality of renewable resources: Economic feasibility perspectives in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 61-70.
    15. Yang, Zhile & Li, Kang & Foley, Aoife, 2015. "Computational scheduling methods for integrating plug-in electric vehicles with power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 396-416.
    16. Akikur, R.K. & Saidur, R. & Ping, H.W. & Ullah, K.R., 2013. "Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 738-752.
    17. Heetae Kim & Seoin Baek & Kyu Ha Choi & Dojin Kim & Seongmin Lee & Dahill Kim & Hyun Joon Chang, 2016. "Comparative Analysis of On- and Off-Grid Electrification: The Case of Two South Korean Islands," Sustainability, MDPI, vol. 8(4), pages 1-13, April.
    18. Subodh Kharel & Bahman Shabani, 2018. "Hydrogen as a Long-Term Large-Scale Energy Storage Solution to Support Renewables," Energies, MDPI, vol. 11(10), pages 1-17, October.
    19. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    20. Abdilahi, Abdirahman Mohamed & Mohd Yatim, Abdul Halim & Mustafa, Mohd Wazir & Khalaf, Omar Tahseen & Shumran, Alshammari Fahad & Mohamed Nor, Faizah, 2014. "Feasibility study of renewable energy-based microgrid system in Somaliland׳s urban centers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1048-1059.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:58:y:2016:i:c:p:1466-1474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.