IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v15y1990i7p645-659.html
   My bibliography  Save this article

5.2 Decomposition and importance sampling for stochastic linear models

Author

Listed:
  • Entriken, Robert
  • Infanger, Gerd

Abstract

Linear models that have uncertain parameters with known probability distributions are called stochastic linear models. This paper focuses on the difficulties introduced by these stochastic parameters and reviews different approaches to handle them. The following solution method uses decomposition techniques and importance sampling, and its illustration is based upon a case study of a power system with random fluctuations in demand and equipment availabilities. Numerical results are presented.

Suggested Citation

  • Entriken, Robert & Infanger, Gerd, 1990. "5.2 Decomposition and importance sampling for stochastic linear models," Energy, Elsevier, vol. 15(7), pages 645-659.
  • Handle: RePEc:eee:energy:v:15:y:1990:i:7:p:645-659
    DOI: 10.1016/0360-5442(90)90012-Q
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/036054429090012Q
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0360-5442(90)90012-Q?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. HO, James K. & LOUTE, Etienne, 1981. "A set of staircase linear programming test problems," LIDAM Reprints CORE 596, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. George B. Dantzig, 1955. "Linear Programming under Uncertainty," Management Science, INFORMS, vol. 1(3-4), pages 197-206, 04-07.
    3. John R. Birge, 1985. "Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs," Operations Research, INFORMS, vol. 33(5), pages 989-1007, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Seunghyok & Koo, Jamin & Lee, Chang Jun & Yoon, En Sup, 2012. "Optimization of Korean energy planning for sustainability considering uncertainties in learning rates and external factors," Energy, Elsevier, vol. 44(1), pages 126-134.
    2. Chen Peng & Feryal Erhun & Erik F. Hertzler & Karl G. Kempf, 2012. "Capacity Planning in the Semiconductor Industry: Dual-Mode Procurement with Options," Manufacturing & Service Operations Management, INFORMS, vol. 14(2), pages 170-185, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ketabchi, Saeed & Behboodi-Kahoo, Malihe, 2015. "Augmented Lagrangian method within L-shaped method for stochastic linear programs," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 12-20.
    2. Shapiro, Alexander, 2021. "Tutorial on risk neutral, distributionally robust and risk averse multistage stochastic programming," European Journal of Operational Research, Elsevier, vol. 288(1), pages 1-13.
    3. Ankur Kulkarni & Uday Shanbhag, 2012. "Recourse-based stochastic nonlinear programming: properties and Benders-SQP algorithms," Computational Optimization and Applications, Springer, vol. 51(1), pages 77-123, January.
    4. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    5. Fan, Wei, 2014. "Optimizing Strategic Allocation of Vehicles for One-Way Car-sharing Systems Under Demand Uncertainty," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 53(3).
    6. Fan, Wei & Machemehl, Randy, 2004. "A Multi-stage Monte Carlo Sampling Based Stochastic Programming Model for the Dynamic Vehicle Allocation Problem," 45th Annual Transportation Research Forum, Evanston, Illinois, March 21-23, 2004 208244, Transportation Research Forum.
    7. de Queiroz, Anderson Rodrigo, 2016. "Stochastic hydro-thermal scheduling optimization: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 382-395.
    8. Michael Freimer & Jeffrey Linderoth & Douglas Thomas, 2012. "The impact of sampling methods on bias and variance in stochastic linear programs," Computational Optimization and Applications, Springer, vol. 51(1), pages 51-75, January.
    9. Aghayi, Nazila & Maleki, Bentolhoda, 2016. "Efficiency measurement of DMUs with undesirable outputs under uncertainty based on the directional distance function: Application on bank industry," Energy, Elsevier, vol. 112(C), pages 376-387.
    10. J. F. F. Almeida & S. V. Conceição & L. R. Pinto & B. R. P. Oliveira & L. F. Rodrigues, 2022. "Optimal sales and operations planning for integrated steel industries," Annals of Operations Research, Springer, vol. 315(2), pages 773-790, August.
    11. Sandeep Rath & Kumar Rajaram, 2022. "Staff Planning for Hospitals with Implicit Cost Estimation and Stochastic Optimization," Production and Operations Management, Production and Operations Management Society, vol. 31(3), pages 1271-1289, March.
    12. Castro, Jordi & Escudero, Laureano F. & Monge, Juan F., 2023. "On solving large-scale multistage stochastic optimization problems with a new specialized interior-point approach," European Journal of Operational Research, Elsevier, vol. 310(1), pages 268-285.
    13. Kanudia, Amit & Shukla, PR, 1998. "Modelling of Uncertainties and Price Elastic Demands in Energy-environment Planning for India," Omega, Elsevier, vol. 26(3), pages 409-423, June.
    14. Guigues, Vincent & Juditsky, Anatoli & Nemirovski, Arkadi, 2021. "Constant Depth Decision Rules for multistage optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 295(1), pages 223-232.
    15. Arie M. C. A. Koster & Michael Poss, 2018. "Special issue on: robust combinatorial optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 207-209, September.
    16. Rashed Khanjani-Shiraz & Ali Babapour-Azar & Zohreh Hosseini-Noudeh & Panos M. Pardalos, 2022. "Distributionally robust maximum probability shortest path problem," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 140-167, January.
    17. Walid Ben-Ameur & Adam Ouorou & Guanglei Wang & Mateusz Żotkiewicz, 2018. "Multipolar robust optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 395-434, December.
    18. Lambert, David K. & McCarl, Bruce A. & He, Quifen & Kaylen, Michael S. & Rosenthal, Wesley & Chang, Ching-Cheng & Nayda, W.I., 1995. "Uncertain Yields In Sectoral Welfare Analysis: An Application To Global Warming," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 27(2), pages 1-14, December.
    19. Hsien-Chung Wu, 2019. "Numerical Method for Solving the Robust Continuous-Time Linear Programming Problems," Mathematics, MDPI, vol. 7(5), pages 1-50, May.
    20. V.I. Norkin & G.C. Pflug & A. Ruszczynski, 1996. "A Branch and Bound Method for Stochastic Global Optimization," Working Papers wp96065, International Institute for Applied Systems Analysis.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:15:y:1990:i:7:p:645-659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.