A futuristic least-cost optimisation model of CO2 transportation and storage in the UK/UK Continental Shelf
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Rubin, Edward S. & Yeh, Sonia & Antes, Matt & Berkenpas, Michael & Davison, John, 2007. "Use of experience curves to estimate the future cost of power plants with CO2 capture," Institute of Transportation Studies, Working Paper Series qt46x6h0n0, Institute of Transportation Studies, UC Davis.
- Yeh, Sonia & Rubin, Edward S., 2007. "A centurial history of technological change and learning curves or pulverized coal-fired utility boilers," Institute of Transportation Studies, Working Paper Series qt1f25b3xq, Institute of Transportation Studies, UC Davis.
- A.G. Kemp and A.S. Kasim, 2008. "A Least-Cost optimisation Model of Co2 Capture Applied to Major uK Power Plants Within The Eu-ETS Framework," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 99-134.
- Yeh, Sonia & Rubin, Edward S, 2007. "A centurial history of technological change and learning curves or pulverized coal-fired utility boilers," Institute of Transportation Studies, Working Paper Series qt3zz2w2wr, Institute of Transportation Studies, UC Davis.
- Yeh, Sonia & Rubin, Edward S., 2007. "A centurial history of technological change and learning curves or pulverized coal-fired utility boilers," Institute of Transportation Studies, Working Paper Series qt96z5s545, Institute of Transportation Studies, UC Davis.
- Yeh, Sonia & Rubin, Edward, 2007. "A centurial history of technological change and learning curves or pulverized coal-fired utility boilers," Institute of Transportation Studies, Working Paper Series qt4xn4w7rn, Institute of Transportation Studies, UC Davis.
- Middleton, Richard S. & Bielicki, Jeffrey M., 2009. "A scalable infrastructure model for carbon capture and storage: SimCCS," Energy Policy, Elsevier, vol. 37(3), pages 1052-1060, March.
- Gibbins, Jon & Chalmers, Hannah, 2008. "Carbon capture and storage," Energy Policy, Elsevier, vol. 36(12), pages 4317-4322, December.
- Yeh, Sonia & Rubin, Edward S., 2007. "A centurial history of technological change and learning curves for pulverized coal-fired utility boilers," Energy, Elsevier, vol. 32(10), pages 1996-2005.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Cai, W. & Singham, D.I., 2018. "A principal–agent problem with heterogeneous demand distributions for a carbon capture and storage system," European Journal of Operational Research, Elsevier, vol. 264(1), pages 239-256.
- Massol, Olivier & Tchung-Ming, Stéphane & Banal-Estañol, Albert, 2015.
"Joining the CCS club! The economics of CO2 pipeline projects,"
European Journal of Operational Research, Elsevier, vol. 247(1), pages 259-275.
- Olivier Massol & Stéphane Tchung-Ming & Albert Banal-Estañol, 2015. "Joining the CCS Club ! The economics of CO2 pipeline projects," Post-Print hal-01208201, HAL.
- Kemp, Alexander G. & Kasim, Sola, 2013. "The economics of CO2-EOR cluster developments in the UK Central North Sea," Energy Policy, Elsevier, vol. 62(C), pages 1344-1355.
- Massol, Olivier & Tchung-Ming, Stéphane & Banal-Estañol, Albert, 2018.
"Capturing industrial CO2 emissions in Spain: Infrastructures, costs and break-even prices,"
Energy Policy, Elsevier, vol. 115(C), pages 545-560.
- Olivier Massol & Stéphane Tchung-Ming & Albert Banal-Estanol, 2018. "Capturing industrial CO2 emissions in spain: infrastructures, costs and brek-even prices," Working Papers 1801, Chaire Economie du climat.
- Olivier Massol, 2018. "Capturing Industrial CO2 Emissions in Spain: Infrastructures, Costs, and Break-even Prices," Post-Print hal-04320564, HAL.
- Kemp, Alexander G. & Kasim, Sola, 2010. "An Optimised Illustrative Investment Model Of The Economics Of Integrated Returns From CCS Deployment In The UK/UKCS," SIRE Discussion Papers 2010-126, Scottish Institute for Research in Economics (SIRE).
- Singham, D.I., 2019. "Sample average approximation for the continuous type principal-agent problem," European Journal of Operational Research, Elsevier, vol. 275(3), pages 1050-1057.
- Nadine Heitmann & Christine Bertram & Daiju Narita, 2012.
"Embedding CCS infrastructure into the European electricity system: a policy coordination problem,"
Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(6), pages 669-686, August.
- Heitmann, Nadine & Bertram, Christine & Narita, Daiju, 2010. "Embedding CCS infrastructure into the European electricity system: A policy coordination problem," Kiel Working Papers 1657, Kiel Institute for the World Economy (IfW Kiel).
- Bertram, Christine & Heitmann, Nadine & Narita, Daiju & Schwedeler, Markus, 2012. "How will Germany's CCS policy affect the development of a European CO2 transport infrastructure?," Kiel Policy Brief 43, Kiel Institute for the World Economy (IfW Kiel).
- Cai, W. & Singham, D.I. & Craparo, E.M. & White, J.A., 2014. "Pricing Contracts Under Uncertainty in a Carbon Capture and Storage Framework," Energy Economics, Elsevier, vol. 43(C), pages 56-62.
- Jagu Schippers, Emma & Massol, Olivier, 2022.
"Unlocking CO2 infrastructure deployment: The impact of carbon removal accounting,"
Energy Policy, Elsevier, vol. 171(C).
- Emma Jagu Schippers & Olivier Massol, 2022. "Unlocking CO2 infrastructure deployment: The impact of carbon removal accounting," Post-Print hal-03893021, HAL.
- Emma Jagu & Olivier Massol, 2022. "Unlocking CO2 Infrastructure Deployment The Impact of Carbon Removal Accounting," Working Papers hal-03609403, HAL.
- Massol, O. & Tchung-Ming, S., 2012.
"Joining the CCS Club! Insights from a Northwest European CO2 Pipeline Project,"
Working Papers
12/10, Department of Economics, City University London.
- Olivier Massol & Stéphane Tchung-Ming, 2012. "Joining the CCS Club ! Insights from a Northwest European CO2 pipeline project," Working Papers hal-03206457, HAL.
- Simon Shackley & Michael Thompson, 2012. "Lost in the mix: will the technologies of carbon dioxide capture and storage provide us with a breathing space as we strive to make the transition from fossil fuels to renewables?," Climatic Change, Springer, vol. 110(1), pages 101-121, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yeh, Sonia & Rubin, Edward S., 2012. "A review of uncertainties in technology experience curves," Energy Economics, Elsevier, vol. 34(3), pages 762-771.
- Li, Sheng & Gao, Lin & Zhang, Xiaosong & Lin, Hu & Jin, Hongguang, 2012. "Evaluation of cost reduction potential for a coal based polygeneration system with CO2 capture," Energy, Elsevier, vol. 45(1), pages 101-106.
- Neij, Lena, 2008. "Cost development of future technologies for power generation--A study based on experience curves and complementary bottom-up assessments," Energy Policy, Elsevier, vol. 36(6), pages 2200-2211, June.
- Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
- Muratori, Matteo & Ledna, Catherine & McJeon, Haewon & Kyle, Page & Patel, Pralit & Kim, Son H. & Wise, Marshall & Kheshgi, Haroon S. & Clarke, Leon E. & Edmonds, Jae, 2017. "Cost of power or power of cost: A U.S. modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 861-874.
- Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Choi, Donghyun & Kim, Yeong Jae, 2023. "Local and global experience curves for lumpy and granular energy technologies," Energy Policy, Elsevier, vol. 174(C).
- Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
- Jindal, Abhinav & Nilakantan, Rahul, 2021. "Falling efficiency levels of Indian coal-fired power plants: A slacks-based analysis," Energy Economics, Elsevier, vol. 93(C).
- Kim, Seunghyok & Koo, Jamin & Lee, Chang Jun & Yoon, En Sup, 2012. "Optimization of Korean energy planning for sustainability considering uncertainties in learning rates and external factors," Energy, Elsevier, vol. 44(1), pages 126-134.
- Kaminski, Jacek & KudeLko, Mariusz, 2010. "The prospects for hard coal as a fuel for the Polish power sector," Energy Policy, Elsevier, vol. 38(12), pages 7939-7950, December.
- Braimakis, Konstantinos & Atsonios, Konstantinos & Panopoulos, Kyriakos D. & Karellas, Sotirios & Kakaras, Emmanuel, 2014. "Economic evaluation of decentralized pyrolysis for the production of bio-oil as an energy carrier for improved logistics towards a large centralized gasification plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 57-72.
- Saidur, R. & Ahamed, J.U. & Masjuki, H.H., 2010. "Energy, exergy and economic analysis of industrial boilers," Energy Policy, Elsevier, vol. 38(5), pages 2188-2197, May.
- Yang, Lin & Lv, Haodong & Wei, Ning & Li, Yiming & Zhang, Xian, 2023. "Dynamic optimization of carbon capture technology deployment targeting carbon neutrality, cost efficiency and water stress: Evidence from China's electric power sector," Energy Economics, Elsevier, vol. 125(C).
- Liu, Qiang & Shi, Minjun & Jiang, Kejun, 2009. "New power generation technology options under the greenhouse gases mitigation scenario in China," Energy Policy, Elsevier, vol. 37(6), pages 2440-2449, June.
- Hong, Sungjun & Chung, Yanghon & Woo, Chungwon, 2015. "Scenario analysis for estimating the learning rate of photovoltaic power generation based on learning curve theory in South Korea," Energy, Elsevier, vol. 79(C), pages 80-89.
- Matteson, Schuyler & Williams, Eric, 2015. "Residual learning rates in lead-acid batteries: Effects on emerging technologies," Energy Policy, Elsevier, vol. 85(C), pages 71-79.
- McNerney, James & Doyne Farmer, J. & Trancik, Jessika E., 2011. "Historical costs of coal-fired electricity and implications for the future," Energy Policy, Elsevier, vol. 39(6), pages 3042-3054, June.
- Bossink, Bart, 2020. "Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
- Barma, M.C. & Saidur, R. & Rahman, S.M.A. & Allouhi, A. & Akash, B.A. & Sait, Sadiq M., 2017. "A review on boilers energy use, energy savings, and emissions reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 970-983.
More about this item
Keywords
CO2 transportation Injection rates Supply-overflows;JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:7:p:3652-3667. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.