From fossil fuels to renewables: An analysis of long-term scenarios considering technological learning
Author
Abstract
Suggested Citation
DOI: 10.1016/j.enpol.2018.11.045
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kahouli-Brahmi, Sondes, 2008. "Technological learning in energy-environment-economy modelling: A survey," Energy Policy, Elsevier, vol. 36(1), pages 138-162, January.
- Farmer, J. Doyne & Lafond, François, 2016.
"How predictable is technological progress?,"
Research Policy, Elsevier, vol. 45(3), pages 647-665.
- J. Doyne Farmer & Francois Lafond, 2015. "How predictable is technological progress?," Papers 1502.05274, arXiv.org, revised Nov 2015.
- McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
- Nikolaev, Angel & Konidari, Popi, 2017. "Development and assessment of renewable energy policy scenarios by 2030 for Bulgaria," Renewable Energy, Elsevier, vol. 111(C), pages 792-802.
- Watanabe, Chihiro, 1995. "Identification of the role of renewable energy," Renewable Energy, Elsevier, vol. 6(3), pages 237-274.
- Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
- Dagher, Leila & Ruble, Isabella, 2011.
"Modeling Lebanon’s electricity sector: Alternative scenarios and their implications,"
Energy, Elsevier, vol. 36(7), pages 4315-4326.
- Dagher, Leila & ruble, isabella, 2010. "Modeling Lebanon’s electricity sector: Alternative scenarios and their implications," MPRA Paper 116127, University Library of Munich, Germany.
- Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935, January.
- Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008.
"Modeling endogenous technological change for climate policy analysis,"
Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
- Gillingham, Kenneth T. & Newell, Richard G. & Pizer, William A., 2007. "Modeling Endogenous Technological Change for Climate Policy Analysis," RFF Working Paper Series dp-07-14, Resources for the Future.
- Rothwell, Geoffrey & Rust, John, 1997.
"On the Optimal Lifetime of Nuclear Power Plants,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 15(2), pages 195-208, April.
- John Rust & Geoffrey Rothwell, 1995. "On the Optimal Lifetime of Nuclear Power Plants," Industrial Organization 9512002, University Library of Munich, Germany, revised 19 Jan 1996.
- Park, Nyun-Bae & Yun, Sun-Jin & Jeon, Eui-Chan, 2013. "An analysis of long-term scenarios for the transition to renewable energy in the Korean electricity sector," Energy Policy, Elsevier, vol. 52(C), pages 288-296.
- Sagar, Ambuj D. & van der Zwaan, Bob, 2006. "Technological innovation in the energy sector: R&D, deployment, and learning-by-doing," Energy Policy, Elsevier, vol. 34(17), pages 2601-2608, November.
- Kumar, Subhash, 2016. "Assessment of renewables for energy security and carbon mitigation in Southeast Asia: The case of Indonesia and Thailand," Applied Energy, Elsevier, vol. 163(C), pages 63-70.
- Kumar, Subhash & Madlener, Reinhard, 2016. "CO2 emission reduction potential assessment using renewable energy in India," Energy, Elsevier, vol. 97(C), pages 273-282.
- Berglund, Christer & Soderholm, Patrik, 2006. "Modeling technical change in energy system analysis: analyzing the introduction of learning-by-doing in bottom-up energy models," Energy Policy, Elsevier, vol. 34(12), pages 1344-1356, August.
- Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
- Awopone, Albert K. & Zobaa, Ahmed F. & Banuenumah, Walter, 2017. "Techno-economic and environmental analysis of power generation expansion plan of Ghana," Energy Policy, Elsevier, vol. 104(C), pages 13-22.
- Grubler, Arnulf & Nakicenovic, Nebojsa & Victor, David G., 1999. "Dynamics of energy technologies and global change," Energy Policy, Elsevier, vol. 27(5), pages 247-280, May.
- Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198, January.
- Heuberger, Clara F. & Rubin, Edward S. & Staffell, Iain & Shah, Nilay & Mac Dowell, Niall, 2017. "Power capacity expansion planning considering endogenous technology cost learning," Applied Energy, Elsevier, vol. 204(C), pages 831-845.
- Kim, Seunghyok & Koo, Jamin & Lee, Chang Jun & Yoon, En Sup, 2012. "Optimization of Korean energy planning for sustainability considering uncertainties in learning rates and external factors," Energy, Elsevier, vol. 44(1), pages 126-134.
- Charlie Wilson & Arnulf Grubler, 2011. "Lessons from the history of technological change for clean energy scenarios and policies," Natural Resources Forum, Blackwell Publishing, vol. 35(3), pages 165-184, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wilson, Charlie, 2012. "Up-scaling, formative phases, and learning in the historical diffusion of energy technologies," Energy Policy, Elsevier, vol. 50(C), pages 81-94.
- Mercure, Jean-François, 2012. "FTT:Power : A global model of the power sector with induced technological change and natural resource depletion," Energy Policy, Elsevier, vol. 48(C), pages 799-811.
- Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Santhakumar, Srinivasan & Meerman, Hans & Faaij, André, 2021. "Improving the analytical framework for quantifying technological progress in energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
- Moon, Hee Seung & Song, Yong Hyun & Lee, Ji Woo & Hong, Sanghyun & Kim, Eunsung & Kim, Seung Wan, 2024. "Implementation cost of net zero electricity system: Analysis based on Korean national target," Energy Policy, Elsevier, vol. 188(C).
- Upstill, Garrett & Hall, Peter, 2018. "Estimating the learning rate of a technology with multiple variants: The case of carbon storage," Energy Policy, Elsevier, vol. 121(C), pages 498-505.
- Mercure, J.-F. & Pollitt, H. & Chewpreecha, U. & Salas, P. & Foley, A.M. & Holden, P.B. & Edwards, N.R., 2014.
"The dynamics of technology diffusion and the impacts of climate policy instruments in the decarbonisation of the global electricity sector,"
Energy Policy, Elsevier, vol. 73(C), pages 686-700.
- Jean-Francois Mercure & Hector Pollitt & Unnada Chewpreecha & Pablo Salas & Aideen M. Foley & Philip B. Holden & Neil R. Edwards, 2013. "The dynamics of technology diffusion and the impacts of climate policy instruments in the decarbonisation of the global electricity sector," 4CMR Working Paper Series 006, University of Cambridge, Department of Land Economy, Cambridge Centre for Climate Change Mitigation Research.
- Paul Lehmann & Patrik Söderholm, 2018.
"Can Technology-Specific Deployment Policies Be Cost-Effective? The Case of Renewable Energy Support Schemes,"
Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(2), pages 475-505, October.
- Lehmann, Paul & Söderholm, Patrik, 2016. "Can technology-specific deployment policies be cost-effective? The case of renewable energy support schemes," UFZ Discussion Papers 1/2016, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
- Ciarli, Tommaso & Savona, Maria, 2019.
"Modelling the Evolution of Economic Structure and Climate Change: A Review,"
Ecological Economics, Elsevier, vol. 158(C), pages 51-64.
- Tommaso Ciarli & Maria Savona, 2019. "Modelling the Evolution of Economic Structure and Climate Change: A Review," SPRU Working Paper Series 2019-01, SPRU - Science Policy Research Unit, University of Sussex Business School.
- Prasad, Ravita D. & Bansal, R.C. & Raturi, Atul, 2014. "Multi-faceted energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 686-699.
- De Cian, Enrica & Buhl, Johannes & Carrara, Samuel & Michela Bevione, Michela & Monetti, Silvia & Berg, Holger, 2016.
"Knowledge Creation between Integrated Assessment Models and Initiative-Based Learning - An Interdisciplinary Approach,"
MITP: Mitigation, Innovation and Transformation Pathways
249784, Fondazione Eni Enrico Mattei (FEEM).
- Enrica De Cian & Johannes Buhl & Samuel Carrara & Michela Bevione & Silvia Monetti & Holger Berg, 2016. "Knowledge Creation between Integrated Assessment Models and Initiative-Based Learning - An Interdisciplinary Approach," Working Papers 2016.66, Fondazione Eni Enrico Mattei.
- Knobloch, Florian & Pollitt, Hector & Chewpreecha, Unnada & Lewney, Richard & Huijbregts, Mark A.J. & Mercure, Jean-Francois, 2021. "FTT:Heat — A simulation model for technological change in the European residential heating sector," Energy Policy, Elsevier, vol. 153(C).
- Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
- Gan, Peck Yean & Li, ZhiDong, 2015. "Quantitative study on long term global solar photovoltaic market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 88-99.
- Shayegh, Soheil & Sanchez, Daniel L. & Caldeira, Ken, 2017. "Evaluating relative benefits of different types of R&D for clean energy technologies," Energy Policy, Elsevier, vol. 107(C), pages 532-538.
- Bossink, Bart, 2020. "Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
- Bento, Nuno & Gianfrate, Gianfranco & Groppo, Sara Virginia, 2019. "Do crowdfunding returns reward risk? Evidences from clean-tech projects," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 107-116.
- Guillaume Bourgeois & Sandrine Mathy & Philippe Menanteau, 2017. "The effect of climate policies on renewable energies : a review of econometric studies [L’effet des politiques climatiques sur les énergies renouvelables : une revue des études économétriques]," Post-Print hal-01585906, HAL.
- Kavlak, Goksin & McNerney, James & Trancik, Jessika E., 2018. "Evaluating the causes of cost reduction in photovoltaic modules," Energy Policy, Elsevier, vol. 123(C), pages 700-710.
- Mathias Mier & Jacqueline Adelowo & Valeriya Azarova, 2022. "Endogenous Technological Change in Power Markets," ifo Working Paper Series 373, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
More about this item
Keywords
Renewable energy; Technological learning; LEAP; Climate change mitigation; Indonesia;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:127:y:2019:i:c:p:134-146. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.