IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v127y2019icp134-146.html
   My bibliography  Save this article

From fossil fuels to renewables: An analysis of long-term scenarios considering technological learning

Author

Listed:
  • Handayani, Kamia
  • Krozer, Yoram
  • Filatova, Tatiana

Abstract

This study analyses a diffusion of renewable energy in an electricity system accounting for technological learning. We explore long-term scenarios for capacity expansion of the Java-Bali electricity system in Indonesia, considering the country’s renewable energy targets. We apply the Long-range Energy Alternative Planning (LEAP) model with an integration of technological learning. Our results reveal that, at the medium and high pace of technological learning, the total costs of electricity production to achieve the long-term renewable energy target are 4–10% lower than the scenario without considering technological learning. With respect to technology, solar PV and wind become competitive with other types of renewables and nuclear. Moreover, the fulfilment of the renewable energy targets decreases CO2 emissions by 25% compared to the reference scenario. Implications of our results indicate that energy policies should focus on the early deployment of renewables, upgrading the grid capacity to accommodate variable renewable energy, and enabling faster local learning.

Suggested Citation

  • Handayani, Kamia & Krozer, Yoram & Filatova, Tatiana, 2019. "From fossil fuels to renewables: An analysis of long-term scenarios considering technological learning," Energy Policy, Elsevier, vol. 127(C), pages 134-146.
  • Handle: RePEc:eee:enepol:v:127:y:2019:i:c:p:134-146
    DOI: 10.1016/j.enpol.2018.11.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518307833
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.11.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kahouli-Brahmi, Sondes, 2008. "Technological learning in energy-environment-economy modelling: A survey," Energy Policy, Elsevier, vol. 36(1), pages 138-162, January.
    2. Farmer, J. Doyne & Lafond, François, 2016. "How predictable is technological progress?," Research Policy, Elsevier, vol. 45(3), pages 647-665.
    3. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
    4. Nikolaev, Angel & Konidari, Popi, 2017. "Development and assessment of renewable energy policy scenarios by 2030 for Bulgaria," Renewable Energy, Elsevier, vol. 111(C), pages 792-802.
    5. Watanabe, Chihiro, 1995. "Identification of the role of renewable energy," Renewable Energy, Elsevier, vol. 6(3), pages 237-274.
    6. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    7. Dagher, Leila & Ruble, Isabella, 2011. "Modeling Lebanon’s electricity sector: Alternative scenarios and their implications," Energy, Elsevier, vol. 36(7), pages 4315-4326.
    8. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935, September.
    9. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    10. Rothwell, Geoffrey & Rust, John, 1997. "On the Optimal Lifetime of Nuclear Power Plants," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(2), pages 195-208, April.
    11. Park, Nyun-Bae & Yun, Sun-Jin & Jeon, Eui-Chan, 2013. "An analysis of long-term scenarios for the transition to renewable energy in the Korean electricity sector," Energy Policy, Elsevier, vol. 52(C), pages 288-296.
    12. Sagar, Ambuj D. & van der Zwaan, Bob, 2006. "Technological innovation in the energy sector: R&D, deployment, and learning-by-doing," Energy Policy, Elsevier, vol. 34(17), pages 2601-2608, November.
    13. Kumar, Subhash, 2016. "Assessment of renewables for energy security and carbon mitigation in Southeast Asia: The case of Indonesia and Thailand," Applied Energy, Elsevier, vol. 163(C), pages 63-70.
    14. Kumar, Subhash & Madlener, Reinhard, 2016. "CO2 emission reduction potential assessment using renewable energy in India," Energy, Elsevier, vol. 97(C), pages 273-282.
    15. Berglund, Christer & Soderholm, Patrik, 2006. "Modeling technical change in energy system analysis: analyzing the introduction of learning-by-doing in bottom-up energy models," Energy Policy, Elsevier, vol. 34(12), pages 1344-1356, August.
    16. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    17. Awopone, Albert K. & Zobaa, Ahmed F. & Banuenumah, Walter, 2017. "Techno-economic and environmental analysis of power generation expansion plan of Ghana," Energy Policy, Elsevier, vol. 104(C), pages 13-22.
    18. Grubler, Arnulf & Nakicenovic, Nebojsa & Victor, David G., 1999. "Dynamics of energy technologies and global change," Energy Policy, Elsevier, vol. 27(5), pages 247-280, May.
    19. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198, September.
    20. Heuberger, Clara F. & Rubin, Edward S. & Staffell, Iain & Shah, Nilay & Mac Dowell, Niall, 2017. "Power capacity expansion planning considering endogenous technology cost learning," Applied Energy, Elsevier, vol. 204(C), pages 831-845.
    21. Kim, Seunghyok & Koo, Jamin & Lee, Chang Jun & Yoon, En Sup, 2012. "Optimization of Korean energy planning for sustainability considering uncertainties in learning rates and external factors," Energy, Elsevier, vol. 44(1), pages 126-134.
    22. Charlie Wilson & Arnulf Grubler, 2011. "Lessons from the history of technological change for clean energy scenarios and policies," Natural Resources Forum, Blackwell Publishing, vol. 35(3), pages 165-184, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Santhakumar, Srinivasan & Meerman, Hans & Faaij, André, 2021. "Improving the analytical framework for quantifying technological progress in energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Wilson, Charlie, 2012. "Up-scaling, formative phases, and learning in the historical diffusion of energy technologies," Energy Policy, Elsevier, vol. 50(C), pages 81-94.
    4. Mercure, Jean-François, 2012. "FTT:Power : A global model of the power sector with induced technological change and natural resource depletion," Energy Policy, Elsevier, vol. 48(C), pages 799-811.
    5. Moon, Hee Seung & Song, Yong Hyun & Lee, Ji Woo & Hong, Sanghyun & Kim, Eunsung & Kim, Seung Wan, 2024. "Implementation cost of net zero electricity system: Analysis based on Korean national target," Energy Policy, Elsevier, vol. 188(C).
    6. Ciarli, Tommaso & Savona, Maria, 2019. "Modelling the Evolution of Economic Structure and Climate Change: A Review," Ecological Economics, Elsevier, vol. 158(C), pages 51-64.
    7. Prasad, Ravita D. & Bansal, R.C. & Raturi, Atul, 2014. "Multi-faceted energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 686-699.
    8. De Cian, Enrica & Buhl, Johannes & Carrara, Samuel & Michela Bevione, Michela & Monetti, Silvia & Berg, Holger, 2016. "Knowledge Creation between Integrated Assessment Models and Initiative-Based Learning - An Interdisciplinary Approach," MITP: Mitigation, Innovation and Transformation Pathways 249784, Fondazione Eni Enrico Mattei (FEEM).
    9. Mercure, J.-F. & Pollitt, H. & Chewpreecha, U. & Salas, P. & Foley, A.M. & Holden, P.B. & Edwards, N.R., 2014. "The dynamics of technology diffusion and the impacts of climate policy instruments in the decarbonisation of the global electricity sector," Energy Policy, Elsevier, vol. 73(C), pages 686-700.
    10. Knobloch, Florian & Pollitt, Hector & Chewpreecha, Unnada & Lewney, Richard & Huijbregts, Mark A.J. & Mercure, Jean-Francois, 2021. "FTT:Heat — A simulation model for technological change in the European residential heating sector," Energy Policy, Elsevier, vol. 153(C).
    11. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    12. Shayegh, Soheil & Sanchez, Daniel L. & Caldeira, Ken, 2017. "Evaluating relative benefits of different types of R&D for clean energy technologies," Energy Policy, Elsevier, vol. 107(C), pages 532-538.
    13. Bossink, Bart, 2020. "Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    14. Mathias Mier & Jacqueline Adelowo & Valeriya Azarova, 2022. "Endogenous Technological Change in Power Markets," ifo Working Paper Series 373, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    15. Paul Lehmann & Patrik Söderholm, 2018. "Can Technology-Specific Deployment Policies Be Cost-Effective? The Case of Renewable Energy Support Schemes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(2), pages 475-505, October.
    16. Wen, Xin & Jaxa-Rozen, Marc & Trutnevyte, Evelina, 2023. "Hindcasting to inform the development of bottom-up electricity system models: The cases of endogenous demand and technology learning," Applied Energy, Elsevier, vol. 340(C).
    17. Heuberger, Clara F. & Rubin, Edward S. & Staffell, Iain & Shah, Nilay & Mac Dowell, Niall, 2017. "Power capacity expansion planning considering endogenous technology cost learning," Applied Energy, Elsevier, vol. 204(C), pages 831-845.
    18. Upstill, Garrett & Hall, Peter, 2018. "Estimating the learning rate of a technology with multiple variants: The case of carbon storage," Energy Policy, Elsevier, vol. 121(C), pages 498-505.
    19. Gan, Peck Yean & Li, ZhiDong, 2015. "Quantitative study on long term global solar photovoltaic market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 88-99.
    20. Bento, Nuno & Gianfrate, Gianfranco & Groppo, Sara Virginia, 2019. "Do crowdfunding returns reward risk? Evidences from clean-tech projects," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 107-116.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:127:y:2019:i:c:p:134-146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.