Residual learning rates in lead-acid batteries: Effects on emerging technologies
Author
Abstract
Suggested Citation
DOI: 10.1016/j.enpol.2015.05.014
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hadjipaschalis, Ioannis & Poullikkas, Andreas & Efthimiou, Venizelos, 2009. "Overview of current and future energy storage technologies for electric power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1513-1522, August.
- Matteson, Schuyler & Williams, Eric, 2015. "Learning dependent subsidies for lithium-ion electric vehicle batteries," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 322-331.
- McManus, M.C., 2012. "Environmental consequences of the use of batteries in low carbon systems: The impact of battery production," Applied Energy, Elsevier, vol. 93(C), pages 288-295.
- van der Zwaan, Bob & Rabl, Ari, 2004. "The learning potential of photovoltaics: implications for energy policy," Energy Policy, Elsevier, vol. 32(13), pages 1545-1554, September.
- McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
- McNerney, James & Doyne Farmer, J. & Trancik, Jessika E., 2011. "Historical costs of coal-fired electricity and implications for the future," Energy Policy, Elsevier, vol. 39(6), pages 3042-3054, June.
- Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
- Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
- Yeh, Sonia & Rubin, Edward S., 2007. "A centurial history of technological change and learning curves or pulverized coal-fired utility boilers," Institute of Transportation Studies, Working Paper Series qt1f25b3xq, Institute of Transportation Studies, UC Davis.
- Junginger, M. & Faaij, A. & Turkenburg, W. C., 2005. "Global experience curves for wind farms," Energy Policy, Elsevier, vol. 33(2), pages 133-150, January.
- Koomey, Jonathan & Hultman, Nathan E., 2007. "A reactor-level analysis of busbar costs for US nuclear plants, 1970-2005," Energy Policy, Elsevier, vol. 35(11), pages 5630-5642, November.
- C. Harmon, 2000. "Experience Curves of Photovoltaic Technology," Working Papers ir00014, International Institute for Applied Systems Analysis.
- Yeh, Sonia & Rubin, Edward S, 2007. "A centurial history of technological change and learning curves or pulverized coal-fired utility boilers," Institute of Transportation Studies, Working Paper Series qt3zz2w2wr, Institute of Transportation Studies, UC Davis.
- Yeh, Sonia & Rubin, Edward S., 2007. "A centurial history of technological change and learning curves or pulverized coal-fired utility boilers," Institute of Transportation Studies, Working Paper Series qt96z5s545, Institute of Transportation Studies, UC Davis.
- McKenna, Eoghan & McManus, Marcelle & Cooper, Sam & Thomson, Murray, 2013. "Economic and environmental impact of lead-acid batteries in grid-connected domestic PV systems," Applied Energy, Elsevier, vol. 104(C), pages 239-249.
- Yeh, Sonia & Rubin, Edward, 2007. "A centurial history of technological change and learning curves or pulverized coal-fired utility boilers," Institute of Transportation Studies, Working Paper Series qt4xn4w7rn, Institute of Transportation Studies, UC Davis.
- Yeh, Sonia & Rubin, Edward S., 2007. "A centurial history of technological change and learning curves for pulverized coal-fired utility boilers," Energy, Elsevier, vol. 32(10), pages 1996-2005.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- van Velzen, Arjan & Annema, Jan Anne & van de Kaa, Geerten & van Wee, Bert, 2019. "Proposing a more comprehensive future total cost of ownership estimation framework for electric vehicles," Energy Policy, Elsevier, vol. 129(C), pages 1034-1046.
- Jaiswal, Abhishek, 2017. "Lithium-ion battery based renewable energy solution for off-grid electricity: A techno-economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 922-934.
- Rodrigues, E.M.G. & Godina, R. & Catalão, J.P.S., 2017. "Modelling electrochemical energy storage devices in insular power network applications supported on real data," Applied Energy, Elsevier, vol. 188(C), pages 315-329.
- Sascha Samadi, 2016. "A Review of Factors Influencing the Cost Development of Electricity Generation Technologies," Energies, MDPI, vol. 9(11), pages 1-25, November.
- Heuberger, Clara F. & Rubin, Edward S. & Staffell, Iain & Shah, Nilay & Mac Dowell, Niall, 2017. "Power capacity expansion planning considering endogenous technology cost learning," Applied Energy, Elsevier, vol. 204(C), pages 831-845.
- Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
- de Oliveira e Silva, Guilherme & Hendrick, Patrick, 2016. "Lead–acid batteries coupled with photovoltaics for increased electricity self-sufficiency in households," Applied Energy, Elsevier, vol. 178(C), pages 856-867.
- Renaldi, Renaldi & Hall, Richard & Jamasb, Tooraj & Roskilly, Anthony P., 2021.
"Experience rates of low-carbon domestic heating technologies in the United Kingdom,"
Energy Policy, Elsevier, vol. 156(C).
- Renaldi, Renaldi & Hall, Richard & Jamasb, Tooraj & Roskilly, Anthony P., 2020. "Experience Rates of Low-Carbon Domestic Heating Technologies in the United Kingdom," Working Papers 16-2020, Copenhagen Business School, Department of Economics.
- Bustos, Cristian & Watts, David & Olivares, Daniel, 2019. "The evolution over time of Distributed Energy Resource’s penetration: A robust framework to assess the future impact of prosumage under different tariff designs," Applied Energy, Elsevier, vol. 256(C).
- Thomassen, Gwenny & Van Passel, Steven & Dewulf, Jo, 2020. "A review on learning effects in prospective technology assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
- Bustos, Cristian & Watts, David, 2017. "Novel methodology for microgrids in isolated communities: Electricity cost-coverage trade-off with 3-stage technology mix, dispatch & configuration optimizations," Applied Energy, Elsevier, vol. 195(C), pages 204-221.
- Khan, Hassan Abbas & Ahmad, Husnain Fateh & Nasir, Mashood & Nadeem, Muhammad Fatiq & Zaffar, Nauman Ahmed, 2018. "Decentralised electric power delivery for rural electrification in Pakistan," Energy Policy, Elsevier, vol. 120(C), pages 312-323.
- Carlos J. Sarasa-Maestro & Rodolfo Dufo-López & José L. Bernal-Agustín, 2016. "Analysis of Photovoltaic Self-Consumption Systems," Energies, MDPI, vol. 9(9), pages 1-18, August.
- Mengzhu Xiao & Manuel Wetzel & Thomas Pregger & Sonja Simon & Yvonne Scholz, 2020. "Modeling the Supply of Renewable Electricity to Metropolitan Regions in China," Energies, MDPI, vol. 13(12), pages 1-31, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
- Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
- Neij, Lena, 2008. "Cost development of future technologies for power generation--A study based on experience curves and complementary bottom-up assessments," Energy Policy, Elsevier, vol. 36(6), pages 2200-2211, June.
- Hong, Sungjun & Chung, Yanghon & Woo, Chungwon, 2015. "Scenario analysis for estimating the learning rate of photovoltaic power generation based on learning curve theory in South Korea," Energy, Elsevier, vol. 79(C), pages 80-89.
- Bossink, Bart, 2020. "Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
- Sascha Samadi, 2016. "A Review of Factors Influencing the Cost Development of Electricity Generation Technologies," Energies, MDPI, vol. 9(11), pages 1-25, November.
- Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Yeh, Sonia & Rubin, Edward S., 2012. "A review of uncertainties in technology experience curves," Energy Economics, Elsevier, vol. 34(3), pages 762-771.
- Muratori, Matteo & Ledna, Catherine & McJeon, Haewon & Kyle, Page & Patel, Pralit & Kim, Son H. & Wise, Marshall & Kheshgi, Haroon S. & Clarke, Leon E. & Edmonds, Jae, 2017. "Cost of power or power of cost: A U.S. modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 861-874.
- McNerney, James & Doyne Farmer, J. & Trancik, Jessika E., 2011. "Historical costs of coal-fired electricity and implications for the future," Energy Policy, Elsevier, vol. 39(6), pages 3042-3054, June.
- Choi, Donghyun & Kim, Yeong Jae, 2023. "Local and global experience curves for lumpy and granular energy technologies," Energy Policy, Elsevier, vol. 174(C).
- Li, Sheng & Gao, Lin & Zhang, Xiaosong & Lin, Hu & Jin, Hongguang, 2012. "Evaluation of cost reduction potential for a coal based polygeneration system with CO2 capture," Energy, Elsevier, vol. 45(1), pages 101-106.
- Kim, Seunghyok & Koo, Jamin & Lee, Chang Jun & Yoon, En Sup, 2012. "Optimization of Korean energy planning for sustainability considering uncertainties in learning rates and external factors," Energy, Elsevier, vol. 44(1), pages 126-134.
- Liu, Qiang & Shi, Minjun & Jiang, Kejun, 2009. "New power generation technology options under the greenhouse gases mitigation scenario in China," Energy Policy, Elsevier, vol. 37(6), pages 2440-2449, June.
- Yan Xu & Jiahai Yuan & Jianxiu Wang, 2017. "Learning of Power Technologies in China: Staged Dynamic Two-Factor Modeling and Empirical Evidence," Sustainability, MDPI, vol. 9(5), pages 1-14, May.
- Jindal, Abhinav & Nilakantan, Rahul, 2021. "Falling efficiency levels of Indian coal-fired power plants: A slacks-based analysis," Energy Economics, Elsevier, vol. 93(C).
- Kemp, Alexander G. & Sola Kasim, A., 2010. "A futuristic least-cost optimisation model of CO2 transportation and storage in the UK/UK Continental Shelf," Energy Policy, Elsevier, vol. 38(7), pages 3652-3667, July.
- Kaminski, Jacek & KudeLko, Mariusz, 2010. "The prospects for hard coal as a fuel for the Polish power sector," Energy Policy, Elsevier, vol. 38(12), pages 7939-7950, December.
- Braimakis, Konstantinos & Atsonios, Konstantinos & Panopoulos, Kyriakos D. & Karellas, Sotirios & Kakaras, Emmanuel, 2014. "Economic evaluation of decentralized pyrolysis for the production of bio-oil as an energy carrier for improved logistics towards a large centralized gasification plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 57-72.
- Saidur, R. & Ahamed, J.U. & Masjuki, H.H., 2010. "Energy, exergy and economic analysis of industrial boilers," Energy Policy, Elsevier, vol. 38(5), pages 2188-2197, May.
More about this item
Keywords
Experience curve; Lead-acid battery; Material costs;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:85:y:2015:i:c:p:71-79. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.