IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v37y2012i1p136-153.html
   My bibliography  Save this article

Comparison of black liquor gasification with other pulping biorefinery concepts – Systems analysis of economic performance and CO2 emissions

Author

Listed:
  • Pettersson, Karin
  • Harvey, Simon

Abstract

Black liquor gasification (BLG) is being developed as an alternative technology for energy and chemical recovery in kraft pulp mills. This study compares BLG – with downstream production of DME (dimethyl ether) or electricity – with recovery boiler-based pulping biorefinery concepts for different types of mills. The comparison is based on profitability as well as CO2 emissions, using different future energy market scenarios. The possibility for carbon capture and storage (CCS) is considered. The results show that, if commercialised, BLG with DME production could be profitable for both market pulp mills and integrated pulp and paper mills in all energy market scenarios considered. Recovery boiler-based biorefinery concepts including extraction of lignin or solid biomass gasification with DME production could also be profitable for market and integrated mills, respectively. If the mill is located close to an infrastructure for CO2 collection and transportation, CCS significantly improves profitability in scenarios with a high CO2 emissions charge, for both combustion- and gasification-based systems. Concepts that include CCS generally show a large potential for reduction of global CO2 emissions. Few of the concepts without CCS achieve a significant reduction of CO2 emissions, especially for integrated mills.

Suggested Citation

  • Pettersson, Karin & Harvey, Simon, 2012. "Comparison of black liquor gasification with other pulping biorefinery concepts – Systems analysis of economic performance and CO2 emissions," Energy, Elsevier, vol. 37(1), pages 136-153.
  • Handle: RePEc:eee:energy:v:37:y:2012:i:1:p:136-153
    DOI: 10.1016/j.energy.2011.10.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211006797
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.10.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lindfeldt, Erik G. & Saxe, Maria & Magnusson, Mimmi & Mohseni, Farzad, 2010. "Strategies for a road transport system based on renewable resources - The case of an import-independent Sweden in 2025," Applied Energy, Elsevier, vol. 87(6), pages 1836-1845, June.
    2. Pettersson, Karin & Harvey, Simon, 2010. "CO2 emission balances for different black liquor gasification biorefinery concepts for production of electricity or second-generation liquid biofuels," Energy, Elsevier, vol. 35(2), pages 1101-1106.
    3. Gustavsson, L. & Holmberg, J. & Dornburg, V. & Sathre, R. & Eggers, T. & Mahapatra, K. & Marland, G., 2007. "Using biomass for climate change mitigation and oil use reduction," Energy Policy, Elsevier, vol. 35(11), pages 5671-5691, November.
    4. Andersson, E. & Harvey, S., 2006. "System analysis of hydrogen production from gasified black liquor," Energy, Elsevier, vol. 31(15), pages 3426-3434.
    5. Andersson, Eva & Harvey, Simon & Berntsson, Thore, 2006. "Energy efficient upgrading of biofuel integrated with a pulp mill," Energy, Elsevier, vol. 31(10), pages 1384-1394.
    6. Hamelinck, Carlo N. & Faaij, André P.C. & den Uil, Herman & Boerrigter, Harold, 2004. "Production of FT transportation fuels from biomass; technical options, process analysis and optimisation, and development potential," Energy, Elsevier, vol. 29(11), pages 1743-1771.
    7. Eriksson, H. & Harvey, S., 2004. "Black liquor gasification—consequences for both industry and society," Energy, Elsevier, vol. 29(4), pages 581-612.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Özdenkçi, Karhan & De Blasio, Cataldo & Sarwar, Golam & Melin, Kristian & Koskinen, Jukka & Alopaeus, Ville, 2019. "Techno-economic feasibility of supercritical water gasification of black liquor," Energy, Elsevier, vol. 189(C).
    2. Carvalho, Lara & Lundgren, Joakim & Wetterlund, Elisabeth & Wolf, Jens & Furusjö, Erik, 2018. "Methanol production via black liquor co-gasification with expanded raw material base – Techno-economic assessment," Applied Energy, Elsevier, vol. 225(C), pages 570-584.
    3. Holmgren, Kristina M. & Andersson, Eva & Berntsson, Thore & Rydberg, Tomas, 2014. "Gasification-based methanol production from biomass in industrial clusters: Characterisation of energy balances and greenhouse gas emissions," Energy, Elsevier, vol. 69(C), pages 622-637.
    4. Andersson, Jim & Lundgren, Joakim, 2014. "Techno-economic analysis of ammonia production via integrated biomass gasification," Applied Energy, Elsevier, vol. 130(C), pages 484-490.
    5. Sandberg, Erik & Toffolo, Andrea & Krook-Riekkola, Anna, 2019. "A bottom-up study of biomass and electricity use in a fossil free Swedish industry," Energy, Elsevier, vol. 167(C), pages 1019-1030.
    6. Pettersson, Karin & Wetterlund, Elisabeth & Athanassiadis, Dimitris & Lundmark, Robert & Ehn, Christian & Lundgren, Joakim & Berglin, Niklas, 2015. "Integration of next-generation biofuel production in the Swedish forest industry – A geographically explicit approach," Applied Energy, Elsevier, vol. 154(C), pages 317-332.
    7. Granacher, Julia & Nguyen, Tuong-Van & Castro-Amoedo, Rafael & Maréchal, François, 2022. "Overcoming decision paralysis—A digital twin for decision making in energy system design," Applied Energy, Elsevier, vol. 306(PA).
    8. Rey, J.R.C. & Pio, D.T. & Tarelho, L.A.C., 2021. "Biomass direct gasification for electricity generation and natural gas replacement in the lime kilns of the pulp and paper industry: A techno-economic analysis," Energy, Elsevier, vol. 237(C).
    9. Nong, Guangzai & Huang, Lijie & Mo, Haitao & Wang, Shuangfei, 2013. "Investigate the variability of gas compositions and thermal efficiency of bagasse black liquor gasification," Energy, Elsevier, vol. 49(C), pages 178-181.
    10. Jafri, Yawer & Wetterlund, Elisabeth & Anheden, Marie & Kulander, Ida & Håkansson, Åsa & Furusjö, Erik, 2019. "Multi-aspect evaluation of integrated forest-based biofuel production pathways: Part 2. economics, GHG emissions, technology maturity and production potentials," Energy, Elsevier, vol. 172(C), pages 1312-1328.
    11. Yin, Yongjun & Liu, Jiang & Yang, Jingjing & Wang, Yang & Jia, Yanlong & Song, Xueping & Wu, Min & Man, Yi, 2023. "Energetic-environmental-economic assessment of utilizing weak black liquor to produce syngas for replacing evaporation based on coal water slurry gasification," Energy, Elsevier, vol. 283(C).
    12. Ljungstedt, Hanna & Pettersson, Karin & Harvey, Simon, 2013. "Evaluation of opportunities for heat integration of biomass-based Fischer–Tropsch crude production at Scandinavian kraft pulp and paper mill sites," Energy, Elsevier, vol. 62(C), pages 349-361.
    13. Börjesson Hagberg, Martin & Pettersson, Karin & Ahlgren, Erik O., 2016. "Bioenergy futures in Sweden – Modeling integration scenarios for biofuel production," Energy, Elsevier, vol. 109(C), pages 1026-1039.
    14. Pio, D.T. & Tarelho, L.A.C. & Pinto, P.C.R., 2020. "Gasification-based biorefinery integration in the pulp and paper industry: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    15. Cao, Changqing & Guo, Liejin & Jin, Hui & Cao, Wen & Jia, Yi & Yao, Xiangdong, 2017. "System analysis of pulping process coupled with supercritical water gasification of black liquor for combined hydrogen, heat and power production," Energy, Elsevier, vol. 132(C), pages 238-247.
    16. Yang, F. & Meerman, J.C. & Faaij, A.P.C., 2021. "Carbon capture and biomass in industry: A techno-economic analysis and comparison of negative emission options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joelsson, Jonas M. & Gustavsson, Leif, 2012. "Reductions in greenhouse gas emissions and oil use by DME (di-methyl ether) and FT (Fischer-Tropsch) diesel production in chemical pulp mills," Energy, Elsevier, vol. 39(1), pages 363-374.
    2. Wetterlund, Elisabeth & Pettersson, Karin & Harvey, Simon, 2011. "Systems analysis of integrating biomass gasification with pulp and paper production – Effects on economic performance, CO2 emissions and energy use," Energy, Elsevier, vol. 36(2), pages 932-941.
    3. Johansson, Daniella & Franck, Per-Åke & Berntsson, Thore, 2012. "Hydrogen production from biomass gasification in the oil refining industry – A system analysis," Energy, Elsevier, vol. 38(1), pages 212-227.
    4. Joelsson, Jonas & Gustavsson, Leif, 2012. "Swedish biomass strategies to reduce CO2 emission and oil use in an EU context," Energy, Elsevier, vol. 43(1), pages 448-468.
    5. Cao, Changqing & Guo, Liejin & Jin, Hui & Cao, Wen & Jia, Yi & Yao, Xiangdong, 2017. "System analysis of pulping process coupled with supercritical water gasification of black liquor for combined hydrogen, heat and power production," Energy, Elsevier, vol. 132(C), pages 238-247.
    6. Laurijssen, Jobien & Faaij, André & Worrell, Ernst, 2012. "Energy conversion strategies in the European paper industry – A case study in three countries," Applied Energy, Elsevier, vol. 98(C), pages 102-113.
    7. Guo, Da-liang & Wu, Shu-bin & Liu, Bei & Yin, Xiu-li & Yang, Qing, 2012. "Catalytic effects of NaOH and Na2CO3 additives on alkali lignin pyrolysis and gasification," Applied Energy, Elsevier, vol. 95(C), pages 22-30.
    8. Bright, Ryan M. & H. Strømman, Anders, 2010. "Incentivizing wood-based Fischer-Tropsch diesel through financial policy instruments: An economic assessment for Norway," Energy Policy, Elsevier, vol. 38(11), pages 6849-6859, November.
    9. Andersson, E. & Harvey, S., 2007. "Comparison of pulp-mill-integrated hydrogen production from gasified black liquor with stand-alone production from gasified biomass," Energy, Elsevier, vol. 32(4), pages 399-405.
    10. Pettersson, Karin & Harvey, Simon, 2010. "CO2 emission balances for different black liquor gasification biorefinery concepts for production of electricity or second-generation liquid biofuels," Energy, Elsevier, vol. 35(2), pages 1101-1106.
    11. Nong, Guangzai & Huang, Lijie & Mo, Haitao & Wang, Shuangfei, 2013. "Investigate the variability of gas compositions and thermal efficiency of bagasse black liquor gasification," Energy, Elsevier, vol. 49(C), pages 178-181.
    12. Isaksson, Johan & Pettersson, Karin & Mahmoudkhani, Maryam & Åsblad, Anders & Berntsson, Thore, 2012. "Integration of biomass gasification with a Scandinavian mechanical pulp and paper mill – Consequences for mass and energy balances and global CO2 emissions," Energy, Elsevier, vol. 44(1), pages 420-428.
    13. Holmgren, Kristina M. & Berntsson, Thore & Andersson, Eva & Rydberg, Tomas, 2012. "System aspects of biomass gasification with methanol synthesis – Process concepts and energy analysis," Energy, Elsevier, vol. 45(1), pages 817-828.
    14. Kou, Nannan & Zhao, Fu, 2011. "Techno-economical analysis of a thermo-chemical biofuel plant with feedstock and product flexibility under external disturbances," Energy, Elsevier, vol. 36(12), pages 6745-6752.
    15. Ribeiro Domingos, Meire Ellen Gorete & Flórez-Orrego, Daniel & dos Santos, Moisés Teles & de Oliveira Junior, Silvio & Maréchal, François, 2023. "Process modeling and integration of hydrogen and synthetic natural gas production in a kraft pulp mill via black liquor gasification," Renewable Energy, Elsevier, vol. 219(P1).
    16. Naqvi, Muhammad & Yan, Jinyue & Dahlquist, Erik, 2012. "Bio-refinery system in a pulp mill for methanol production with comparison of pressurized black liquor gasification and dry gasification using direct causticization," Applied Energy, Elsevier, vol. 90(1), pages 24-31.
    17. Akbari, Maryam & Oyedun, Adetoyese Olajire & Kumar, Amit, 2018. "Ammonia production from black liquor gasification and co-gasification with pulp and waste sludges: A techno-economic assessment," Energy, Elsevier, vol. 151(C), pages 133-143.
    18. Wafiq, A. & Hanafy, M., 2015. "Feasibility assessment of diesel fuel production in Egypt using coal and biomass: Integrated novel methodology," Energy, Elsevier, vol. 85(C), pages 522-533.
    19. Amigun, Bamikole & Gorgens, Johann & Knoetze, Hansie, 2010. "Biomethanol production from gasification of non-woody plant in South Africa: Optimum scale and economic performance," Energy Policy, Elsevier, vol. 38(1), pages 312-322, January.
    20. Im-orb, Karittha & Simasatitkul, Lida & Arpornwichanop, Amornchai, 2016. "Techno-economic analysis of the biomass gasification and Fischer–Tropsch integrated process with off-gas recirculation," Energy, Elsevier, vol. 94(C), pages 483-496.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:37:y:2012:i:1:p:136-153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.