IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v219y2023ip1s0960148123013113.html
   My bibliography  Save this article

Process modeling and integration of hydrogen and synthetic natural gas production in a kraft pulp mill via black liquor gasification

Author

Listed:
  • Ribeiro Domingos, Meire Ellen Gorete
  • Flórez-Orrego, Daniel
  • dos Santos, Moisés Teles
  • de Oliveira Junior, Silvio
  • Maréchal, François

Abstract

The black liquor gasification integrated to chemical plants has shown potential for reducing the process irreversibility and promoting the decarbonization of this industrial sector. In the integrated chemical plants proposed in this work, the purpose is co-producing pulp and gaseous fuels, either hydrogen or synthetic natural gas, in order to expand the biorefinery product portfolio and, consequently, increase the plant revenues. However, due to additional equipment and utility demands, along with the uncertainty about the prices of the commodities; the benefits of the integrated setups must be thoroughly weighed by considering thermodynamic, economic and environmental indicators before the retrofit of the existing configuration is implemented. The exergy method is used along with the energy integration technique and other financial indicators to determine whether and in which scenarios the integrated biorefineries would be more attractive. The average exergy efficiency of the integrated chemical production plants is 44%, which is higher than that of the conventional case (40%). The balance of the overall CO2 emissions vary from 1.97 to −0.56 tCO2/tPulp, for the conventional and integrated setups, respectively. An incremental financial analysis under uncertainty also shows that the hydrogen production route with partial import of electricity and carbon taxations above 60 EUR/tCO2 outperforms the other scenarios. Therefore, the import of electricity from low-carbon grids and the upgrade of biorefinery residues arise as key factors for ensuring the sustainable production of traditionally fossil-based chemicals under more stringent environmental regulations.

Suggested Citation

  • Ribeiro Domingos, Meire Ellen Gorete & Flórez-Orrego, Daniel & dos Santos, Moisés Teles & de Oliveira Junior, Silvio & Maréchal, François, 2023. "Process modeling and integration of hydrogen and synthetic natural gas production in a kraft pulp mill via black liquor gasification," Renewable Energy, Elsevier, vol. 219(P1).
  • Handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123013113
    DOI: 10.1016/j.renene.2023.119396
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123013113
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119396?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andersson, E. & Harvey, S., 2006. "System analysis of hydrogen production from gasified black liquor," Energy, Elsevier, vol. 31(15), pages 3426-3434.
    2. Hamelinck, Carlo N. & Faaij, André P.C. & den Uil, Herman & Boerrigter, Harold, 2004. "Production of FT transportation fuels from biomass; technical options, process analysis and optimisation, and development potential," Energy, Elsevier, vol. 29(11), pages 1743-1771.
    3. Naqvi, Muhammad & Yan, Jinyue & Dahlquist, Erik, 2012. "Synthetic gas production from dry black liquor gasification process using direct causticization with CO2 capture," Applied Energy, Elsevier, vol. 97(C), pages 49-55.
    4. Lee, Boreum & Lee, Hyunjun & Kim, Sehwa & Cho, Hyun-Seok & Cho, Won-Chul & Jeon, Byong-Hun & Kim, Chang-Hee & Lim, Hankwon, 2019. "Quantification of economic uncertainty for synthetic natural gas production in a H2O permeable membrane reactor as simultaneous power-to-gas and CO2 utilization technologies," Energy, Elsevier, vol. 182(C), pages 1058-1068.
    5. Mesfun, Sennai & Toffolo, Andrea, 2013. "Optimization of process integration in a Kraft pulp and paper mill – Evaporation train and CHP system," Applied Energy, Elsevier, vol. 107(C), pages 98-110.
    6. Vitasari, Caecilia R. & Jurascik, Martin & Ptasinski, Krzysztof J., 2011. "Exergy analysis of biomass-to-synthetic natural gas (SNG) process via indirect gasification of various biomass feedstock," Energy, Elsevier, vol. 36(6), pages 3825-3837.
    7. Darmawan, Arif & Ajiwibowo, Muhammad W. & Biddinika, Muhammad Kunta & Tokimatsu, Koji & Aziz, Muhammad, 2019. "Black liquor-based hydrogen and power co-production: Combination of supercritical water gasification and syngas chemical looping," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    8. Magdeldin, Mohamed & Järvinen, Mika, 2020. "Supercritical water gasification of Kraft black liquor: Process design, analysis, pulp mill integration and economic evaluation," Applied Energy, Elsevier, vol. 262(C).
    9. Satu Lipiäinen & Eeva-Lotta Apajalahti & Esa Vakkilainen, 2023. "Decarbonization Prospects for the European Pulp and Paper Industry: Different Development Pathways and Needed Actions," Energies, MDPI, vol. 16(2), pages 1-18, January.
    10. Haro, Pedro & Johnsson, Filip & Thunman, Henrik, 2016. "Improved syngas processing for enhanced Bio-SNG production: A techno-economic assessment," Energy, Elsevier, vol. 101(C), pages 380-389.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar, Vineet & Malyan, Sandeep Kumar & Apollon, Wilgince & Verma, Pradeep, 2024. "Valorization of pulp and paper industry waste streams into bioenergy and value-added products: An integrated biorefinery approach," Renewable Energy, Elsevier, vol. 228(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi, Xingang & Chen, Yunan & Zhao, Jiuyun & Su, Di & Liu, Fan & Lu, Libo & Jin, Hui & Guo, Liejin, 2023. "Thermodynamic and environmental assessment of black liquor supercritical water gasification integrated online salt recovery polygeneration system," Energy, Elsevier, vol. 278(PA).
    2. Yang, F. & Meerman, J.C. & Faaij, A.P.C., 2021. "Carbon capture and biomass in industry: A techno-economic analysis and comparison of negative emission options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Chaiwatanodom, Paphonwit & Vivanpatarakij, Supawat & Assabumrungrat, Suttichai, 2014. "Thermodynamic analysis of biomass gasification with CO2 recycle for synthesis gas production," Applied Energy, Elsevier, vol. 114(C), pages 10-17.
    4. Andersson, Jim & Lundgren, Joakim, 2014. "Techno-economic analysis of ammonia production via integrated biomass gasification," Applied Energy, Elsevier, vol. 130(C), pages 484-490.
    5. Singlitico, Alessandro & Kilgallon, Ian & Goggins, Jamie & Monaghan, Rory F.D., 2019. "GIS-based techno-economic optimisation of a regional supply chain for large-scale deployment of bio-SNG in a natural gas network," Applied Energy, Elsevier, vol. 250(C), pages 1036-1052.
    6. Darmawan, Arif & Ajiwibowo, Muhammad W. & Yoshikawa, Kunio & Aziz, Muhammad & Tokimatsu, Koji, 2018. "Energy-efficient recovery of black liquor through gasification and syngas chemical looping," Applied Energy, Elsevier, vol. 219(C), pages 290-298.
    7. Antonio Molino & Vincenzo Larocca & Simeone Chianese & Dino Musmarra, 2018. "Biofuels Production by Biomass Gasification: A Review," Energies, MDPI, vol. 11(4), pages 1-31, March.
    8. Gutiérrez, R.E. & Guerra, K. & Haro, P., 2022. "Exploring the techno-economic feasibility of new bioeconomy concepts: Solar-assisted thermochemical biorefineries," Applied Energy, Elsevier, vol. 322(C).
    9. Sennai Mesfun & Jan-Olof Anderson & Kentaro Umeki & Andrea Toffolo, 2016. "Integrated SNG Production in a Typical Nordic Sawmill," Energies, MDPI, vol. 9(5), pages 1-19, April.
    10. Rahbari, Alireza & Shirazi, Alec & Venkataraman, Mahesh B. & Pye, John, 2021. "Solar fuels from supercritical water gasification of algae: Impacts of low-cost hydrogen on reformer configurations," Applied Energy, Elsevier, vol. 288(C).
    11. Cao, Changqing & Guo, Liejin & Jin, Hui & Cao, Wen & Jia, Yi & Yao, Xiangdong, 2017. "System analysis of pulping process coupled with supercritical water gasification of black liquor for combined hydrogen, heat and power production," Energy, Elsevier, vol. 132(C), pages 238-247.
    12. Naqvi, Muhammad & Yan, Jinyue & Dahlquist, Erik, 2013. "System analysis of dry black liquor gasification based synthetic gas production comparing oxygen and air blown gasification systems," Applied Energy, Elsevier, vol. 112(C), pages 1275-1282.
    13. Pettersson, Karin & Harvey, Simon, 2012. "Comparison of black liquor gasification with other pulping biorefinery concepts – Systems analysis of economic performance and CO2 emissions," Energy, Elsevier, vol. 37(1), pages 136-153.
    14. Wetterlund, Elisabeth & Pettersson, Karin & Harvey, Simon, 2011. "Systems analysis of integrating biomass gasification with pulp and paper production – Effects on economic performance, CO2 emissions and energy use," Energy, Elsevier, vol. 36(2), pages 932-941.
    15. Martínez, I. & Romano, M.C., 2016. "Flexible sorption enhanced gasification (SEG) of biomass for the production of synthetic natural gas (SNG) and liquid biofuels: Process assessment of stand-alone and power-to-gas plant schemes for SNG," Energy, Elsevier, vol. 113(C), pages 615-630.
    16. Johansson, Daniella & Franck, Per-Åke & Berntsson, Thore, 2012. "Hydrogen production from biomass gasification in the oil refining industry – A system analysis," Energy, Elsevier, vol. 38(1), pages 212-227.
    17. Amigun, Bamikole & Gorgens, Johann & Knoetze, Hansie, 2010. "Biomethanol production from gasification of non-woody plant in South Africa: Optimum scale and economic performance," Energy Policy, Elsevier, vol. 38(1), pages 312-322, January.
    18. Im-orb, Karittha & Simasatitkul, Lida & Arpornwichanop, Amornchai, 2016. "Techno-economic analysis of the biomass gasification and Fischer–Tropsch integrated process with off-gas recirculation," Energy, Elsevier, vol. 94(C), pages 483-496.
    19. Gassner, Martin & Maréchal, François, 2009. "Thermodynamic comparison of the FICFB and Viking gasification concepts," Energy, Elsevier, vol. 34(10), pages 1744-1753.
    20. Tomków, Łukasz & Cholewiński, Maciej, 2015. "Improvement of the LNG (liquid natural gas) regasification efficiency by utilizing the cold exergy with a coupled absorption – ORC (organic Rankine cycle)," Energy, Elsevier, vol. 87(C), pages 645-653.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123013113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.