IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v69y2014icp622-637.html
   My bibliography  Save this article

Gasification-based methanol production from biomass in industrial clusters: Characterisation of energy balances and greenhouse gas emissions

Author

Listed:
  • Holmgren, Kristina M.
  • Andersson, Eva
  • Berntsson, Thore
  • Rydberg, Tomas

Abstract

This study evaluates the potential for reducing life cycle greenhouse gas (GHG) emissions of biomass gasification-based methanol production systems based on energy balances. Configurations which are process integrated with a chemical cluster have been compared to stand-alone units, i.e. units with no connection to any other industry but with the possibility to district heating connection. Two different uses of methanol are considered: the use as a vehicle fuel and the use for production of olefins via the methanol-to-olefins process. An added value of the integration can be the availability of excess hydrogen. For the studied case, the methanol production could be increased by 10% by using excess hydrogen from the cluster.

Suggested Citation

  • Holmgren, Kristina M. & Andersson, Eva & Berntsson, Thore & Rydberg, Tomas, 2014. "Gasification-based methanol production from biomass in industrial clusters: Characterisation of energy balances and greenhouse gas emissions," Energy, Elsevier, vol. 69(C), pages 622-637.
  • Handle: RePEc:eee:energy:v:69:y:2014:i:c:p:622-637
    DOI: 10.1016/j.energy.2014.03.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214003223
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.03.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Clausen, Lasse R. & Houbak, Niels & Elmegaard, Brian, 2010. "Technoeconomic analysis of a methanol plant based on gasification of biomass and electrolysis of water," Energy, Elsevier, vol. 35(5), pages 2338-2347.
    2. Damartzis, T. & Zabaniotou, A., 2011. "Thermochemical conversion of biomass to second generation biofuels through integrated process design--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 366-378, January.
    3. Wetterlund, Elisabeth & Leduc, Sylvain & Dotzauer, Erik & Kindermann, Georg, 2012. "Optimal localisation of biofuel production on a European scale," Energy, Elsevier, vol. 41(1), pages 462-472.
    4. Holmgren, Kristina M. & Berntsson, Thore & Andersson, Eva & Rydberg, Tomas, 2012. "System aspects of biomass gasification with methanol synthesis – Process concepts and energy analysis," Energy, Elsevier, vol. 45(1), pages 817-828.
    5. Isaksson, Johan & Pettersson, Karin & Mahmoudkhani, Maryam & Åsblad, Anders & Berntsson, Thore, 2012. "Integration of biomass gasification with a Scandinavian mechanical pulp and paper mill – Consequences for mass and energy balances and global CO2 emissions," Energy, Elsevier, vol. 44(1), pages 420-428.
    6. Peduzzi, Emanuela & Tock, Laurence & Boissonnet, Guillaume & Maréchal, François, 2013. "Thermo-economic evaluation and optimization of the thermo-chemical conversion of biomass into methanol," Energy, Elsevier, vol. 58(C), pages 9-16.
    7. Joelsson, Jonas & Gustavsson, Leif, 2012. "Swedish biomass strategies to reduce CO2 emission and oil use in an EU context," Energy, Elsevier, vol. 43(1), pages 448-468.
    8. Johansson, Daniella & Franck, Per-Åke & Berntsson, Thore, 2012. "Hydrogen production from biomass gasification in the oil refining industry – A system analysis," Energy, Elsevier, vol. 38(1), pages 212-227.
    9. Fahlén, E. & Ahlgren, E.O., 2009. "Assessment of integration of different biomass gasification alternatives in a district-heating system," Energy, Elsevier, vol. 34(12), pages 2184-2195.
    10. Pettersson, Karin & Harvey, Simon, 2012. "Comparison of black liquor gasification with other pulping biorefinery concepts – Systems analysis of economic performance and CO2 emissions," Energy, Elsevier, vol. 37(1), pages 136-153.
    11. Wetterlund, Elisabeth & Söderström, Mats, 2010. "Biomass gasification in district heating systems - The effect of economic energy policies," Applied Energy, Elsevier, vol. 87(9), pages 2914-2922, September.
    12. Wetterlund, Elisabeth & Pettersson, Karin & Harvey, Simon, 2011. "Systems analysis of integrating biomass gasification with pulp and paper production – Effects on economic performance, CO2 emissions and energy use," Energy, Elsevier, vol. 36(2), pages 932-941.
    13. Sarkar, Susanjib & Kumar, Amit & Sultana, Arifa, 2011. "Biofuels and biochemicals production from forest biomass in Western Canada," Energy, Elsevier, vol. 36(10), pages 6251-6262.
    14. Leduc, S. & Lundgren, J. & Franklin, O. & Dotzauer, E., 2010. "Location of a biomass based methanol production plant: A dynamic problem in northern Sweden," Applied Energy, Elsevier, vol. 87(1), pages 68-75, January.
    15. Axelsson, E. & Harvey, S. & Berntsson, T., 2009. "A tool for creating energy market scenarios for evaluation of investments in energy intensive industry," Energy, Elsevier, vol. 34(12), pages 2069-2074.
    16. Christin Liptow & Anne‐Marie Tillman, 2012. "A Comparative Life Cycle Assessment Study of Polyethylene Based on Sugarcane and Crude Oil," Journal of Industrial Ecology, Yale University, vol. 16(3), pages 420-435, June.
    17. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Kindermann, Georg & Schmid, Erwin, 2010. "Cost-effective CO2 emission reduction through heat, power and biofuel production from woody biomass: A spatially explicit comparison of conversion technologies," Applied Energy, Elsevier, vol. 87(7), pages 2128-2141, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kolb, Sebastian & Plankenbühler, Thomas & Hofmann, Katharina & Bergerson, Joule & Karl, Jürgen, 2021. "Life cycle greenhouse gas emissions of renewable gas technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    2. Ipsakis, Dimitris & Ouzounidou, Martha & Papadopoulou, Simira & Seferlis, Panos & Voutetakis, Spyros, 2017. "Dynamic modeling and control analysis of a methanol autothermal reforming and PEM fuel cell power system," Applied Energy, Elsevier, vol. 208(C), pages 703-718.
    3. Wafiq, A. & Hanafy, M., 2015. "Feasibility assessment of diesel fuel production in Egypt using coal and biomass: Integrated novel methodology," Energy, Elsevier, vol. 85(C), pages 522-533.
    4. Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2015. "The influence of biomass supply chains and by-products on the greenhouse gas emissions from gasification-based bio-SNG production systems," Energy, Elsevier, vol. 90(P1), pages 148-162.
    5. Trop, P. & Anicic, B. & Goricanec, D., 2014. "Production of methanol from a mixture of torrefied biomass and coal," Energy, Elsevier, vol. 77(C), pages 125-132.
    6. Butera, Giacomo & Fendt, Sebastian & Jensen, Søren H. & Ahrenfeldt, Jesper & Clausen, Lasse R., 2020. "Flexible methanol production units coupling solid oxide cells and thermochemical biomass conversion via different gasification technologies," Energy, Elsevier, vol. 208(C).
    7. Butera, Giacomo & Gadsbøll, Rasmus Østergaard & Ravenni, Giulia & Ahrenfeldt, Jesper & Henriksen, Ulrik Birk & Clausen, Lasse Røngaard, 2020. "Thermodynamic analysis of methanol synthesis combining straw gasification and electrolysis via the low temperature circulating fluid bed gasifier and a char bed gas cleaning unit," Energy, Elsevier, vol. 199(C).
    8. Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2016. "Comparison of integration options for gasification-based biofuel production systems – Economic and greenhouse gas emission implications," Energy, Elsevier, vol. 111(C), pages 272-294.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2016. "Comparison of integration options for gasification-based biofuel production systems – Economic and greenhouse gas emission implications," Energy, Elsevier, vol. 111(C), pages 272-294.
    2. Johansson, Maria T., 2013. "Bio-synthetic natural gas as fuel in steel industry reheating furnaces – A case study of economic performance and effects on global CO2 emissions," Energy, Elsevier, vol. 57(C), pages 699-708.
    3. Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2015. "The influence of biomass supply chains and by-products on the greenhouse gas emissions from gasification-based bio-SNG production systems," Energy, Elsevier, vol. 90(P1), pages 148-162.
    4. Pettersson, Karin & Wetterlund, Elisabeth & Athanassiadis, Dimitris & Lundmark, Robert & Ehn, Christian & Lundgren, Joakim & Berglin, Niklas, 2015. "Integration of next-generation biofuel production in the Swedish forest industry – A geographically explicit approach," Applied Energy, Elsevier, vol. 154(C), pages 317-332.
    5. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    6. Truong, Nguyen Le & Gustavsson, Leif, 2013. "Integrated biomass-based production of district heat, electricity, motor fuels and pellets of different scales," Applied Energy, Elsevier, vol. 104(C), pages 623-632.
    7. Holmgren, Kristina M. & Berntsson, Thore & Andersson, Eva & Rydberg, Tomas, 2012. "System aspects of biomass gasification with methanol synthesis – Process concepts and energy analysis," Energy, Elsevier, vol. 45(1), pages 817-828.
    8. Wafiq, A. & Hanafy, M., 2015. "Feasibility assessment of diesel fuel production in Egypt using coal and biomass: Integrated novel methodology," Energy, Elsevier, vol. 85(C), pages 522-533.
    9. Wetterlund, Elisabeth & Leduc, Sylvain & Dotzauer, Erik & Kindermann, Georg, 2012. "Optimal localisation of biofuel production on a European scale," Energy, Elsevier, vol. 41(1), pages 462-472.
    10. Zhang, Hanfei & Wang, Ligang & Pérez-Fortes, Mar & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic optimization of biomass-to-methanol with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 258(C).
    11. Manju Dhakad Tanwar & Felipe Andrade Torres & Ali Mubarak Alqahtani & Pankaj Kumar Tanwar & Yashas Bhand & Omid Doustdar, 2023. "Promising Bioalcohols for Low-Emission Vehicles," Energies, MDPI, vol. 16(2), pages 1-22, January.
    12. Pio, D.T. & Tarelho, L.A.C. & Pinto, P.C.R., 2020. "Gasification-based biorefinery integration in the pulp and paper industry: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    13. Gustavsson, Leif & Truong, Nguyen Le, 2011. "Coproduction of district heat and electricity or biomotor fuels," Energy, Elsevier, vol. 36(10), pages 6263-6277.
    14. Kolb, Sebastian & Plankenbühler, Thomas & Hofmann, Katharina & Bergerson, Joule & Karl, Jürgen, 2021. "Life cycle greenhouse gas emissions of renewable gas technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    15. Wetterlund, Elisabeth & Söderström, Mats, 2010. "Biomass gasification in district heating systems - The effect of economic energy policies," Applied Energy, Elsevier, vol. 87(9), pages 2914-2922, September.
    16. Rey, J.R.C. & Pio, D.T. & Tarelho, L.A.C., 2021. "Biomass direct gasification for electricity generation and natural gas replacement in the lime kilns of the pulp and paper industry: A techno-economic analysis," Energy, Elsevier, vol. 237(C).
    17. Truong, Nguyen Le & Gustavsson, Leif, 2014. "Minimum-cost district heat production systems of different sizes under different environmental and social cost scenarios," Applied Energy, Elsevier, vol. 136(C), pages 881-893.
    18. Johansson, Daniella & Franck, Per-Åke & Pettersson, Karin & Berntsson, Thore, 2013. "Comparative study of Fischer–Tropsch production and post-combustion CO2 capture at an oil refinery: Economic evaluation and GHG (greenhouse gas emissions) balances," Energy, Elsevier, vol. 59(C), pages 387-401.
    19. Zhen, Xudong & Wang, Yang, 2015. "An overview of methanol as an internal combustion engine fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 477-493.
    20. Wetterlund, Elisabeth & Pettersson, Karin & Harvey, Simon, 2011. "Systems analysis of integrating biomass gasification with pulp and paper production – Effects on economic performance, CO2 emissions and energy use," Energy, Elsevier, vol. 36(2), pages 932-941.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:69:y:2014:i:c:p:622-637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.