IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v85y2015icp522-533.html
   My bibliography  Save this article

Feasibility assessment of diesel fuel production in Egypt using coal and biomass: Integrated novel methodology

Author

Listed:
  • Wafiq, A.
  • Hanafy, M.

Abstract

Diesel fuel shortage is one of the main energy crisis components in Egypt as it is heavily employed in the electricity and transportation sectors. CtL (Coal to Liquids) and CBtL (combined Coal and Biomass to Liquids) are promising routes which can be currently applied for diesel production in Egypt. This paper will propose a novel methodology to drive the CBtL/CtL routes forward in Egypt. The methodology is based on using Miscanthus as biomass material and utilizing the Egyptian “Maghara” coal. It recommends some measures to improve project economics and simultaneously provide solutions to other strategic national problems including the poor sewage infrastructure and the unutilized desert areas. Eight scenarios were studied; four for each route with variable production capacities (450, 900, 1,350, 1,800 tdiesel/d). To evaluate the scenarios, the diesel price was fixed at $50 below its current import price, and the corresponding discount rate and payback period were calculated. At high capacities, both routes are economically feasible (discounted interest rate of about 17%) and less sensitive to the price variation of equipment, raw materials and byproducts. Implementing the CBtL route can be regarded as a strategic project as besides being economically feasible, it offers crucial social and environmental benefits.

Suggested Citation

  • Wafiq, A. & Hanafy, M., 2015. "Feasibility assessment of diesel fuel production in Egypt using coal and biomass: Integrated novel methodology," Energy, Elsevier, vol. 85(C), pages 522-533.
  • Handle: RePEc:eee:energy:v:85:y:2015:i:c:p:522-533
    DOI: 10.1016/j.energy.2015.03.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215003771
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.03.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Walter, Arnaldo & Ensinas, Adriano V., 2010. "Combined production of second-generation biofuels and electricity from sugarcane residues," Energy, Elsevier, vol. 35(2), pages 874-879.
    2. Piekarczyk, Wodzisław & Czarnowska, Lucyna & Ptasiński, Krzysztof & Stanek, Wojciech, 2013. "Thermodynamic evaluation of biomass-to-biofuels production systems," Energy, Elsevier, vol. 62(C), pages 95-104.
    3. Villanueva Perales, A.L. & Reyes Valle, C. & Ollero, P. & Gómez-Barea, A., 2011. "Technoeconomic assessment of ethanol production via thermochemical conversion of biomass by entrained flow gasification," Energy, Elsevier, vol. 36(7), pages 4097-4108.
    4. Yamashita, Kei & Barreto, Leonardo, 2005. "Energyplexes for the 21st century: Coal gasification for co-producing hydrogen, electricity and liquid fuels," Energy, Elsevier, vol. 30(13), pages 2453-2473.
    5. Holmgren, Kristina M. & Andersson, Eva & Berntsson, Thore & Rydberg, Tomas, 2014. "Gasification-based methanol production from biomass in industrial clusters: Characterisation of energy balances and greenhouse gas emissions," Energy, Elsevier, vol. 69(C), pages 622-637.
    6. Johansson, Daniella & Franck, Per-Åke & Pettersson, Karin & Berntsson, Thore, 2013. "Comparative study of Fischer–Tropsch production and post-combustion CO2 capture at an oil refinery: Economic evaluation and GHG (greenhouse gas emissions) balances," Energy, Elsevier, vol. 59(C), pages 387-401.
    7. Seo, Myung Won & Yun, Young Min & Cho, Won Chul & Ra, Ho Won & Yoon, Sang Jun & Lee, Jae Goo & Kim, Yong Ku & Kim, Jae Ho & Lee, See Hoon & Eom, Won Hyun & Lee, Uen Do & Lee, Sang Bong, 2014. "Methanol absorption characteristics for the removal of H2S (hydrogen sulfide), COS (carbonyl sulfide) and CO2 (carbon dioxide) in a pilot-scale biomass-to-liquid process," Energy, Elsevier, vol. 66(C), pages 56-62.
    8. Damartzis, T. & Zabaniotou, A., 2011. "Thermochemical conversion of biomass to second generation biofuels through integrated process design--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 366-378, January.
    9. Sudiro, Maria & Bertucco, Alberto, 2009. "Production of synthetic gasoline and diesel fuel by alternative processes using natural gas and coal: Process simulation and optimization," Energy, Elsevier, vol. 34(12), pages 2206-2214.
    10. Holmgren, Kristina M. & Berntsson, Thore & Andersson, Eva & Rydberg, Tomas, 2012. "System aspects of biomass gasification with methanol synthesis – Process concepts and energy analysis," Energy, Elsevier, vol. 45(1), pages 817-828.
    11. Kou, Nannan & Zhao, Fu, 2011. "Techno-economical analysis of a thermo-chemical biofuel plant with feedstock and product flexibility under external disturbances," Energy, Elsevier, vol. 36(12), pages 6745-6752.
    12. Meerman, J.C. & Ramírez, A. & Turkenburg, W.C. & Faaij, A.P.C., 2012. "Performance of simulated flexible integrated gasification polygeneration facilities, Part B: Economic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6083-6102.
    13. Andersson, E. & Harvey, S., 2007. "Comparison of pulp-mill-integrated hydrogen production from gasified black liquor with stand-alone production from gasified biomass," Energy, Elsevier, vol. 32(4), pages 399-405.
    14. Sarkar, Susanjib & Kumar, Amit & Sultana, Arifa, 2011. "Biofuels and biochemicals production from forest biomass in Western Canada," Energy, Elsevier, vol. 36(10), pages 6251-6262.
    15. Reichling, J.P. & Kulacki, F.A., 2011. "Comparative analysis of Fischer–Tropsch and integrated gasification combined cycle biomass utilization," Energy, Elsevier, vol. 36(11), pages 6529-6535.
    16. Lu, Xiaoming & Norbeck, Joseph M. & Park, Chan S., 2012. "Production of Fischer–Tropsch fuels and electricity from bituminous coal based on steam hydrogasification," Energy, Elsevier, vol. 48(1), pages 525-531.
    17. Buragohain, Buljit & Mahanta, Pinakeswar & Moholkar, Vijayanand S., 2010. "Thermodynamic optimization of biomass gasification for decentralized power generation and Fischer–Tropsch synthesis," Energy, Elsevier, vol. 35(6), pages 2557-2579.
    18. Peduzzi, Emanuela & Tock, Laurence & Boissonnet, Guillaume & Maréchal, François, 2013. "Thermo-economic evaluation and optimization of the thermo-chemical conversion of biomass into methanol," Energy, Elsevier, vol. 58(C), pages 9-16.
    19. Andersson, Eva & Harvey, Simon & Berntsson, Thore, 2006. "Energy efficient upgrading of biofuel integrated with a pulp mill," Energy, Elsevier, vol. 31(10), pages 1384-1394.
    20. Hamelinck, Carlo N. & Faaij, André P.C. & den Uil, Herman & Boerrigter, Harold, 2004. "Production of FT transportation fuels from biomass; technical options, process analysis and optimisation, and development potential," Energy, Elsevier, vol. 29(11), pages 1743-1771.
    21. Seiler, Jean-Marie & Hohwiller, Carole & Imbach, Juliette & Luciani, Jean-François, 2010. "Technical and economical evaluation of enhanced biomass to liquid fuel processes," Energy, Elsevier, vol. 35(9), pages 3587-3592.
    22. Clausen, Lasse R. & Elmegaard, Brian & Houbak, Niels, 2010. "Technoeconomic analysis of a low CO2 emission dimethyl ether (DME) plant based on gasification of torrefied biomass," Energy, Elsevier, vol. 35(12), pages 4831-4842.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdel Aleem, Shady H.E. & Zobaa, Ahmed F. & Abdel Mageed, Hala M., 2015. "Assessment of energy credits for the enhancement of the Egyptian Green Pyramid Rating System," Energy Policy, Elsevier, vol. 87(C), pages 407-416.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2016. "Comparison of integration options for gasification-based biofuel production systems – Economic and greenhouse gas emission implications," Energy, Elsevier, vol. 111(C), pages 272-294.
    2. Holmgren, Kristina M. & Berntsson, Thore & Andersson, Eva & Rydberg, Tomas, 2012. "System aspects of biomass gasification with methanol synthesis – Process concepts and energy analysis," Energy, Elsevier, vol. 45(1), pages 817-828.
    3. Haarlemmer, Geert & Boissonnet, Guillaume & Peduzzi, Emanuela & Setier, Pierre-Alexandre, 2014. "Investment and production costs of synthetic fuels – A literature survey," Energy, Elsevier, vol. 66(C), pages 667-676.
    4. Holmgren, Kristina M. & Andersson, Eva & Berntsson, Thore & Rydberg, Tomas, 2014. "Gasification-based methanol production from biomass in industrial clusters: Characterisation of energy balances and greenhouse gas emissions," Energy, Elsevier, vol. 69(C), pages 622-637.
    5. Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2015. "The influence of biomass supply chains and by-products on the greenhouse gas emissions from gasification-based bio-SNG production systems," Energy, Elsevier, vol. 90(P1), pages 148-162.
    6. Yang, F. & Meerman, J.C. & Faaij, A.P.C., 2021. "Carbon capture and biomass in industry: A techno-economic analysis and comparison of negative emission options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    7. Butera, Giacomo & Fendt, Sebastian & Jensen, Søren H. & Ahrenfeldt, Jesper & Clausen, Lasse R., 2020. "Flexible methanol production units coupling solid oxide cells and thermochemical biomass conversion via different gasification technologies," Energy, Elsevier, vol. 208(C).
    8. Johansson, Daniella & Franck, Per-Åke & Pettersson, Karin & Berntsson, Thore, 2013. "Comparative study of Fischer–Tropsch production and post-combustion CO2 capture at an oil refinery: Economic evaluation and GHG (greenhouse gas emissions) balances," Energy, Elsevier, vol. 59(C), pages 387-401.
    9. Gutiérrez, R.E. & Guerra, K. & Haro, P., 2022. "Exploring the techno-economic feasibility of new bioeconomy concepts: Solar-assisted thermochemical biorefineries," Applied Energy, Elsevier, vol. 322(C).
    10. Damartzis, T. & Zabaniotou, A., 2011. "Thermochemical conversion of biomass to second generation biofuels through integrated process design--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 366-378, January.
    11. Budzianowski, Wojciech M., 2012. "Value-added carbon management technologies for low CO2 intensive carbon-based energy vectors," Energy, Elsevier, vol. 41(1), pages 280-297.
    12. Budzianowski, Wojciech M., 2012. "Negative carbon intensity of renewable energy technologies involving biomass or carbon dioxide as inputs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6507-6521.
    13. Ben Hnich, Khaoula & Khila, Zouhour & Hajjaji, Noureddine, 2020. "Comprehensive study of three configurations coproducing synthetic fuels and electricity from palm residue via Fischer-Tropsch process," Energy, Elsevier, vol. 205(C).
    14. Wetterlund, Elisabeth & Pettersson, Karin & Harvey, Simon, 2011. "Systems analysis of integrating biomass gasification with pulp and paper production – Effects on economic performance, CO2 emissions and energy use," Energy, Elsevier, vol. 36(2), pages 932-941.
    15. Johansson, Daniella & Franck, Per-Åke & Berntsson, Thore, 2012. "Hydrogen production from biomass gasification in the oil refining industry – A system analysis," Energy, Elsevier, vol. 38(1), pages 212-227.
    16. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.
    17. Im-orb, Karittha & Simasatitkul, Lida & Arpornwichanop, Amornchai, 2016. "Techno-economic analysis of the biomass gasification and Fischer–Tropsch integrated process with off-gas recirculation," Energy, Elsevier, vol. 94(C), pages 483-496.
    18. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    19. Syed-Hassan, Syed Shatir A. & Wang, Yi & Hu, Song & Su, Sheng & Xiang, Jun, 2017. "Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 888-913.
    20. Zhou, Wenji & Zhu, Bing & Chen, Dingjiang & Zhao, Fangxian & Fei, Weiyang, 2011. "Technoeconomic assessment of China’s indirect coal liquefaction projects with different CO2 capture alternatives," Energy, Elsevier, vol. 36(11), pages 6559-6566.

    More about this item

    Keywords

    Diesel; Gasification; Miscanthus; Coal; Feasibility; CO2;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:85:y:2015:i:c:p:522-533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.