IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v31y2006i15p3426-3434.html
   My bibliography  Save this article

System analysis of hydrogen production from gasified black liquor

Author

Listed:
  • Andersson, E.
  • Harvey, S.

Abstract

Hydrogen produced from renewable biofuel is both clean and CO2 neutral. This paper evaluates energy and net CO2 emissions consequences of integration of hydrogen production from gasified black liquor in a chemical pulp mill. A model of hydrogen production from gasified black liquor was developed and integration possibilities with the pulp mill's energy system were evaluated in order to maximize energy recovery. The potential hydrogen production is 59000 tonnes per year if integrated with the KAM reference market pulp mill producing 630000 Air dried tonnes (ADt) pulp/year. Changes of net CO2 emissions associated with modified mill electric power balance, biofuel import and end usage of the produced hydrogen are presented and compared with other uses of gasified black liquor such as electricity production and methanol production. Hydrogen production will result in the greatest reduction of net CO2 emissions and could reduce the Swedish CO2 emissions by 8% if implemented in all chemical market pulp mills. The associated increases of biofuel and electric power consumption are 5% and 1.7%, respectively.

Suggested Citation

  • Andersson, E. & Harvey, S., 2006. "System analysis of hydrogen production from gasified black liquor," Energy, Elsevier, vol. 31(15), pages 3426-3434.
  • Handle: RePEc:eee:energy:v:31:y:2006:i:15:p:3426-3434
    DOI: 10.1016/j.energy.2006.03.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544206000727
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2006.03.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pettersson, Karin & Harvey, Simon, 2010. "CO2 emission balances for different black liquor gasification biorefinery concepts for production of electricity or second-generation liquid biofuels," Energy, Elsevier, vol. 35(2), pages 1101-1106.
    2. Naqvi, Muhammad & Yan, Jinyue & Dahlquist, Erik, 2012. "Synthetic gas production from dry black liquor gasification process using direct causticization with CO2 capture," Applied Energy, Elsevier, vol. 97(C), pages 49-55.
    3. Wetterlund, Elisabeth & Pettersson, Karin & Harvey, Simon, 2011. "Systems analysis of integrating biomass gasification with pulp and paper production – Effects on economic performance, CO2 emissions and energy use," Energy, Elsevier, vol. 36(2), pages 932-941.
    4. Qi, Xingang & Chen, Yunan & Zhao, Jiuyun & Su, Di & Liu, Fan & Lu, Libo & Jin, Hui & Guo, Liejin, 2023. "Thermodynamic and environmental assessment of black liquor supercritical water gasification integrated online salt recovery polygeneration system," Energy, Elsevier, vol. 278(PA).
    5. Darmawan, Arif & Ajiwibowo, Muhammad W. & Yoshikawa, Kunio & Aziz, Muhammad & Tokimatsu, Koji, 2018. "Energy-efficient recovery of black liquor through gasification and syngas chemical looping," Applied Energy, Elsevier, vol. 219(C), pages 290-298.
    6. Naqvi, Muhammad & Yan, Jinyue & Dahlquist, Erik, 2012. "Bio-refinery system in a pulp mill for methanol production with comparison of pressurized black liquor gasification and dry gasification using direct causticization," Applied Energy, Elsevier, vol. 90(1), pages 24-31.
    7. Naqvi, Muhammad & Yan, Jinyue & Dahlquist, Erik, 2013. "System analysis of dry black liquor gasification based synthetic gas production comparing oxygen and air blown gasification systems," Applied Energy, Elsevier, vol. 112(C), pages 1275-1282.
    8. Akbari, Maryam & Oyedun, Adetoyese Olajire & Kumar, Amit, 2018. "Ammonia production from black liquor gasification and co-gasification with pulp and waste sludges: A techno-economic assessment," Energy, Elsevier, vol. 151(C), pages 133-143.
    9. Abánades, A. & Rubbia, C. & Salmieri, D., 2012. "Technological challenges for industrial development of hydrogen production based on methane cracking," Energy, Elsevier, vol. 46(1), pages 359-363.
    10. Andersson, E. & Harvey, S., 2007. "Comparison of pulp-mill-integrated hydrogen production from gasified black liquor with stand-alone production from gasified biomass," Energy, Elsevier, vol. 32(4), pages 399-405.
    11. Pettersson, Karin & Harvey, Simon, 2012. "Comparison of black liquor gasification with other pulping biorefinery concepts – Systems analysis of economic performance and CO2 emissions," Energy, Elsevier, vol. 37(1), pages 136-153.
    12. Ribeiro Domingos, Meire Ellen Gorete & Flórez-Orrego, Daniel & dos Santos, Moisés Teles & de Oliveira Junior, Silvio & Maréchal, François, 2023. "Process modeling and integration of hydrogen and synthetic natural gas production in a kraft pulp mill via black liquor gasification," Renewable Energy, Elsevier, vol. 219(P1).
    13. Johansson, Daniella & Franck, Per-Åke & Berntsson, Thore, 2012. "Hydrogen production from biomass gasification in the oil refining industry – A system analysis," Energy, Elsevier, vol. 38(1), pages 212-227.
    14. Cao, Changqing & Xie, Yupeng & Mao, Liuhao & Wei, Wenwen & Shi, Jinwen & Jin, Hui, 2020. "Hydrogen production from supercritical water gasification of soda black liquor with various metal oxides," Renewable Energy, Elsevier, vol. 157(C), pages 24-32.
    15. Darmawan, Arif & Ajiwibowo, Muhammad W. & Biddinika, Muhammad Kunta & Tokimatsu, Koji & Aziz, Muhammad, 2019. "Black liquor-based hydrogen and power co-production: Combination of supercritical water gasification and syngas chemical looping," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    16. Pio, D.T. & Tarelho, L.A.C. & Pinto, P.C.R., 2020. "Gasification-based biorefinery integration in the pulp and paper industry: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    17. Yang, F. & Meerman, J.C. & Faaij, A.P.C., 2021. "Carbon capture and biomass in industry: A techno-economic analysis and comparison of negative emission options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    18. Cao, Changqing & Guo, Liejin & Jin, Hui & Cao, Wen & Jia, Yi & Yao, Xiangdong, 2017. "System analysis of pulping process coupled with supercritical water gasification of black liquor for combined hydrogen, heat and power production," Energy, Elsevier, vol. 132(C), pages 238-247.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:31:y:2006:i:15:p:3426-3434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.