IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v96y2016icp569-580.html
   My bibliography  Save this article

Optimization of diesel–butanol–vegetable oil blend ratios based on engine operating parameters

Author

Listed:
  • Atmanli, Alpaslan
  • Ileri, Erol
  • Yilmaz, Nadir

Abstract

The rule of thumb in literature is that 20% of biodiesel is the most acceptable blend ratio in alternative fuel blends. This work focuses on in-depth mathematical optimization analyses of ternary blends of diesel–butanol–vegetable oil (cotton oil), based on engine operating parameters using RSM (response surface methodology). It is critical to achieve the maximum power and torque for customers while keeping the emissions low enough due to government regulations and certifications. Thus, three optimization studies were conducted at 2200 rpm, which corresponds to the maximum brake torque, and engine emissions were fixed at a maximum possible value based on emission standards, for all three studies. In order to understand the impact of other engine parameters on the blend ratio, as well, various combinations of BTE (brake thermal efficiency), maximum brake power, maximum brake torque, BSFC (brake specific fuel consumption) and BMEP (brake mean effective pressure) were fixed, which correspond to Opt-1 (optimization 1) (BTE and exhaust emissions), optimization 2 (BTE, brake power and exhaust emissions), and optimization 3 (BTE, brake power, brake torque, BSFC, BMEP and exhaust emissions). Optimization studies used experimentally determined emissions and performance data of a diesel engine based on 7 different concentrations of diesel–butanol–cotton oil blends. Optimum values of the blends corresponding to the optimization studies were mathematically determined as Opt-1 (optimization 1) (61.7 vol.% diesel, 34.75 vol.% butanol, 3.55 vol.% cotton oil), Opt-2 (optimization 2) (64.5 vol.% diesel, 28.7 vol.% butanol, 6.8 vol.% cotton oil), and Opt-3 (optimization 3) (65.5 vol.% diesel, 23.1 vol.% butanol, 11.4 vol.% cotton oil). When compared to diesel, BSFCs of Opt-1, Opt-2 and Opt-3 blends at 2200 rpm increased 41.57, 33.87 and 24.53%, respectively. In terms of basic exhaust gas emissions, optimum fuel blends decreased NOx (oxides of nitrogen), CO (carbon monoxide) and HC (hydrocarbon) emissions as compared to diesel.

Suggested Citation

  • Atmanli, Alpaslan & Ileri, Erol & Yilmaz, Nadir, 2016. "Optimization of diesel–butanol–vegetable oil blend ratios based on engine operating parameters," Energy, Elsevier, vol. 96(C), pages 569-580.
  • Handle: RePEc:eee:energy:v:96:y:2016:i:c:p:569-580
    DOI: 10.1016/j.energy.2015.12.091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215017363
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.12.091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D. & Giakoumis, Evangelos G. & Papagiannakis, Roussos G. & Kyritsis, Dimitrios C., 2014. "Influence of properties of various common bio-fuels on the combustion and emission characteristics of high-speed DI (direct injection) diesel engine: Vegetable oil, bio-diesel, ethanol, n-butanol, die," Energy, Elsevier, vol. 73(C), pages 354-366.
    2. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    3. Pandian, M. & Sivapirakasam, S.P. & Udayakumar, M., 2011. "Investigation on the effect of injection system parameters on performance and emission characteristics of a twin cylinder compression ignition direct injection engine fuelled with pongamia biodiesel-d," Applied Energy, Elsevier, vol. 88(8), pages 2663-2676, August.
    4. Betiku, Eriola & Omilakin, Oluwasesan Ropo & Ajala, Sheriff Olalekan & Okeleye, Adebisi Aminat & Taiwo, Abiola Ezekiel & Solomon, Bamidele Ogbe, 2014. "Mathematical modeling and process parameters optimization studies by artificial neural network and response surface methodology: A case of non-edible neem (Azadirachta indica) seed oil biodiesel synth," Energy, Elsevier, vol. 72(C), pages 266-273.
    5. Rakopoulos, C.D. & Dimaratos, A.M. & Giakoumis, E.G. & Rakopoulos, D.C., 2011. "Study of turbocharged diesel engine operation, pollutant emissions and combustion noise radiation during starting with bio-diesel or n-butanol diesel fuel blends," Applied Energy, Elsevier, vol. 88(11), pages 3905-3916.
    6. Yilmaz, Nadir, 2012. "Comparative analysis of biodiesel–ethanol–diesel and biodiesel–methanol–diesel blends in a diesel engine," Energy, Elsevier, vol. 40(1), pages 210-213.
    7. Chen, Zheng & Liu, Jingping & Han, Zhiyu & Du, Biao & Liu, Yun & Lee, Chiafon, 2013. "Study on performance and emissions of a passenger-car diesel engine fueled with butanol–diesel blends," Energy, Elsevier, vol. 55(C), pages 638-646.
    8. No, Soo-Young, 2011. "Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 131-149, January.
    9. Agarwal, Avinash Kumar & Rajamanoharan, K., 2009. "Experimental investigations of performance and emissions of Karanja oil and its blends in a single cylinder agricultural diesel engine," Applied Energy, Elsevier, vol. 86(1), pages 106-112, January.
    10. Sukjit, E. & Herreros, J.M. & Dearn, K.D. & García-Contreras, R. & Tsolakis, A., 2012. "The effect of the addition of individual methyl esters on the combustion and emissions of ethanol and butanol -diesel blends," Energy, Elsevier, vol. 42(1), pages 364-374.
    11. Choi, Byungchul & Jiang, Xiaolong & Kim, Young Kwon & Jung, Gilsung & Lee, Chunhwan & Choi, Inchul & Song, Chi Sung, 2015. "Effect of diesel fuel blend with n-butanol on the emission of a turbocharged common rail direct injection diesel engine," Applied Energy, Elsevier, vol. 146(C), pages 20-28.
    12. Broatch, A. & Tormos, B. & Olmeda, P. & Novella, R., 2014. "Impact of biodiesel fuel on cold starting of automotive direct injection diesel engines," Energy, Elsevier, vol. 73(C), pages 653-660.
    13. Giakoumis, Evangelos G. & Dimaratos, Athanasios M. & Rakopoulos, Constantine D., 2011. "Experimental study of combustion noise radiation during transient turbocharged diesel engine operation," Energy, Elsevier, vol. 36(8), pages 4983-4995.
    14. Karabektas, Murat & Hosoz, Murat, 2009. "Performance and emission characteristics of a diesel engine using isobutanol–diesel fuel blends," Renewable Energy, Elsevier, vol. 34(6), pages 1554-1559.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M, Vinod Babu & K, Madhu Murthy & G, Amba Prasad Rao, 2017. "Butanol and pentanol: The promising biofuels for CI engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1068-1088.
    2. Atmanli, Alpaslan & Ileri, Erol & Yuksel, Bedri & Yilmaz, Nadir, 2015. "Extensive analyses of diesel–vegetable oil–n-butanol ternary blends in a diesel engine," Applied Energy, Elsevier, vol. 145(C), pages 155-162.
    3. Rajesh Kumar, B. & Saravanan, S., 2016. "Use of higher alcohol biofuels in diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 84-115.
    4. Chang, Yu-Cheng & Lee, Wen-Jhy & Lin, Sheng-Lun & Wang, Lin-Chi, 2013. "Green energy: Water-containing acetone–butanol–ethanol diesel blends fueled in diesel engines," Applied Energy, Elsevier, vol. 109(C), pages 182-191.
    5. Chang, Yu-Cheng & Lee, Wen-Jhy & Wu, Tser Son & Wu, Chang-Yu & Chen, Shui-Jen, 2014. "Use of water containing acetone–butanol–ethanol for NOx-PM (nitrogen oxide-particulate matter) trade-off in the diesel engine fueled with biodiesel," Energy, Elsevier, vol. 64(C), pages 678-687.
    6. Fayyazbakhsh, Ahmad & Pirouzfar, Vahid, 2017. "Comprehensive overview on diesel additives to reduce emissions, enhance fuel properties and improve engine performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 891-901.
    7. Yusri, I.M. & Mamat, R. & Najafi, G. & Razman, A. & Awad, Omar I. & Azmi, W.H. & Ishak, W.F.W. & Shaiful, A.I.M., 2017. "Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: A review on engine performance and exhaust emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 169-181.
    8. Najafi, Gholamhassan & Ghobadian, Barat & Yusaf, Talal & Safieddin Ardebili, Seyed Mohammad & Mamat, Rizalman, 2015. "Optimization of performance and exhaust emission parameters of a SI (spark ignition) engine with gasoline–ethanol blended fuels using response surface methodology," Energy, Elsevier, vol. 90(P2), pages 1815-1829.
    9. Krishnamoorthi, M. & Malayalamurthi, R. & Sakthivel, R., 2019. "Optimization of compression ignition engine fueled with diesel - chaulmoogra oil - diethyl ether blend with engine parameters and exhaust gas recirculation," Renewable Energy, Elsevier, vol. 134(C), pages 579-602.
    10. Li, Bowen & Li, Yanfei & Liu, Haoye & Liu, Fang & Wang, Zhi & Wang, Jianxin, 2017. "Combustion and emission characteristics of diesel engine fueled with biodiesel/PODE blends," Applied Energy, Elsevier, vol. 206(C), pages 425-431.
    11. Chen, Zheng & Liu, Jingping & Han, Zhiyu & Du, Biao & Liu, Yun & Lee, Chiafon, 2013. "Study on performance and emissions of a passenger-car diesel engine fueled with butanol–diesel blends," Energy, Elsevier, vol. 55(C), pages 638-646.
    12. Campos-Fernández, Javier & Arnal, Juan M. & Gómez, Jose & Dorado, M. Pilar, 2012. "A comparison of performance of higher alcohols/diesel fuel blends in a diesel engine," Applied Energy, Elsevier, vol. 95(C), pages 267-275.
    13. Cheng, Xinwei & Gan, Suyin & Ng, Hoon Kiat, 2020. "A numerical study on the quasi-steady spray and soot characteristics for soybean methyl ester and its blends with ethanol using CFD-reduced chemical kinetics approach," Energy, Elsevier, vol. 200(C).
    14. Puneet Verma & Svetlana Stevanovic & Ali Zare & Gaurav Dwivedi & Thuy Chu Van & Morgan Davidson & Thomas Rainey & Richard J. Brown & Zoran D. Ristovski, 2019. "An Overview of the Influence of Biodiesel, Alcohols, and Various Oxygenated Additives on the Particulate Matter Emissions from Diesel Engines," Energies, MDPI, vol. 12(10), pages 1-25, May.
    15. Zhou, Nan & Huo, Ming & Wu, Han & Nithyanandan, Karthik & Lee, Chia-fon F. & Wang, Qingnian, 2014. "Low temperature spray combustion of acetone–butanol–ethanol (ABE) and diesel blends," Applied Energy, Elsevier, vol. 117(C), pages 104-115.
    16. Elumalai Perumal Venkatesan & Parthasarathy Murugesan & Sri Veera Venkata Satya Narayana Pichika & Durga Venkatesh Janaki & Yasir Javed & Z. Mahmoud & C Ahamed Saleel, 2022. "Effects of Injection Timing and Antioxidant on NOx Reduction of CI Engine Fueled with Algae Biodiesel Blend Using Machine Learning Techniques," Sustainability, MDPI, vol. 15(1), pages 1-19, December.
    17. Kumar, Satish & Cho, Jae Hyun & Park, Jaedeuk & Moon, Il, 2013. "Advances in diesel–alcohol blends and their effects on the performance and emissions of diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 46-72.
    18. Zaharin, M.S.M. & Abdullah, N.R. & Najafi, G. & Sharudin, H. & Yusaf, T., 2017. "Effects of physicochemical properties of biodiesel fuel blends with alcohol on diesel engine performance and exhaust emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 475-493.
    19. Rizwanul Fattah, I.M. & Masjuki, H.H. & Liaquat, A.M. & Ramli, Rahizar & Kalam, M.A. & Riazuddin, V.N., 2013. "Impact of various biodiesel fuels obtained from edible and non-edible oils on engine exhaust gas and noise emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 552-567.
    20. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Raghavan, V. & Saravanan, C.G. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2014. "Investigation of evaporation and engine characteristics of pine oil biofuel fumigated in the inlet manifold of a diesel engine," Applied Energy, Elsevier, vol. 115(C), pages 514-524.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:96:y:2016:i:c:p:569-580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.