IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v241y2022ics0360544221027729.html
   My bibliography  Save this article

Energy management for a hybrid electric vehicle based on prioritized deep reinforcement learning framework

Author

Listed:
  • Du, Guodong
  • Zou, Yuan
  • Zhang, Xudong
  • Guo, Lingxiong
  • Guo, Ningyuan

Abstract

A novel deep reinforcement learning (DRL) control framework for the energy management strategy of the series hybrid electric tracked vehicle (SHETV) is proposed in this paper. Firstly, the powertrain model of the vehicle is established, and the formulation of the energy management problem is given. Then, an efficient deep reinforcement learning framework based on the double deep Q-learning (DDQL) algorithm is built for the optimal problem solving, which also contains a modified prioritized experience replay (MPER) and an adaptive optimization method of network weights called AMSGrad. The proposed framework is verified by the realistic driving cycle, then is compared to the dynamic programming (DP) method and the previous deep reinforcement learning method. Simulation results show that the newly constructed deep reinforcement learning framework achieves higher training efficiency and lower energy consumption than the previous deep reinforcement learning method does, and the fuel economy is proved to approach the global optimality. Besides, its adaptability and robustness are validated by different driving schedules.

Suggested Citation

  • Du, Guodong & Zou, Yuan & Zhang, Xudong & Guo, Lingxiong & Guo, Ningyuan, 2022. "Energy management for a hybrid electric vehicle based on prioritized deep reinforcement learning framework," Energy, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:energy:v:241:y:2022:i:c:s0360544221027729
    DOI: 10.1016/j.energy.2021.122523
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221027729
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122523?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Shaobo & Hu, Xiaosong & Xin, Zongke & Brighton, James, 2019. "Pontryagin’s Minimum Principle based model predictive control of energy management for a plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 236(C), pages 893-905.
    2. M. Sabri, M.F. & Danapalasingam, K.A. & Rahmat, M.F., 2016. "A review on hybrid electric vehicles architecture and energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1433-1442.
    3. Zou, Yuan & Liu, Teng & Liu, Dexing & Sun, Fengchun, 2016. "Reinforcement learning-based real-time energy management for a hybrid tracked vehicle," Applied Energy, Elsevier, vol. 171(C), pages 372-382.
    4. Wu, Jingda & He, Hongwen & Peng, Jiankun & Li, Yuecheng & Li, Zhanjiang, 2018. "Continuous reinforcement learning of energy management with deep Q network for a power split hybrid electric bus," Applied Energy, Elsevier, vol. 222(C), pages 799-811.
    5. Tian, Xiang & Cai, Yingfeng & Sun, Xiaodong & Zhu, Zhen & Xu, Yiqiang, 2019. "An adaptive ECMS with driving style recognition for energy optimization of parallel hybrid electric buses," Energy, Elsevier, vol. 189(C).
    6. Yuan Zou & Fengchun Sun & Xiaosong Hu & Lino Guzzella & Huei Peng, 2012. "Combined Optimal Sizing and Control for a Hybrid Tracked Vehicle," Energies, MDPI, vol. 5(11), pages 1-14, November.
    7. Han, Xuefeng & He, Hongwen & Wu, Jingda & Peng, Jiankun & Li, Yuecheng, 2019. "Energy management based on reinforcement learning with double deep Q-learning for a hybrid electric tracked vehicle," Applied Energy, Elsevier, vol. 254(C).
    8. Qin, Zhaobo & Luo, Yugong & Zhuang, Weichao & Pan, Ziheng & Li, Keqiang & Peng, Huei, 2018. "Simultaneous optimization of topology, control and size for multi-mode hybrid tracked vehicles," Applied Energy, Elsevier, vol. 212(C), pages 1627-1641.
    9. Du, Guodong & Zou, Yuan & Zhang, Xudong & Kong, Zehui & Wu, Jinlong & He, Dingbo, 2019. "Intelligent energy management for hybrid electric tracked vehicles using online reinforcement learning," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Tribioli, Laura & Cozzolino, Raffaello & Chiappini, Daniele & Iora, Paolo, 2016. "Energy management of a plug-in fuel cell/battery hybrid vehicle with on-board fuel processing," Applied Energy, Elsevier, vol. 184(C), pages 140-154.
    11. Teng Liu & Yuan Zou & Dexing Liu & Fengchun Sun, 2015. "Reinforcement Learning–Based Energy Management Strategy for a Hybrid Electric Tracked Vehicle," Energies, MDPI, vol. 8(7), pages 1-18, July.
    12. Khayyam, Hamid & Bab-Hadiashar, Alireza, 2014. "Adaptive intelligent energy management system of plug-in hybrid electric vehicle," Energy, Elsevier, vol. 69(C), pages 319-335.
    13. Xu, Bin & Shi, Junzhe & Li, Sixu & Li, Huayi & Wang, Zhe, 2021. "Energy consumption and battery aging minimization using a Q-learning strategy for a battery/ultracapacitor electric vehicle," Energy, Elsevier, vol. 229(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ju, Fei & Murgovski, Nikolce & Zhuang, Weichao & Hu, Xiaosong & Song, Ziyou & Wang, Liangmo, 2023. "Predictive energy management with engine switching control for hybrid electric vehicle via ADMM," Energy, Elsevier, vol. 263(PE).
    2. Gao, Qinxiang & Lei, Tao & Yao, Wenli & Zhang, Xingyu & Zhang, Xiaobin, 2023. "A health-aware energy management strategy for fuel cell hybrid electric UAVs based on safe reinforcement learning," Energy, Elsevier, vol. 283(C).
    3. Zhu, Ziqing & Hu, Ze & Chan, Ka Wing & Bu, Siqi & Zhou, Bin & Xia, Shiwei, 2023. "Reinforcement learning in deregulated energy market: A comprehensive review," Applied Energy, Elsevier, vol. 329(C).
    4. Marouane Adnane & Ahmed Khoumsi & João Pedro F. Trovão, 2023. "Efficient Management of Energy Consumption of Electric Vehicles Using Machine Learning—A Systematic and Comprehensive Survey," Energies, MDPI, vol. 16(13), pages 1-39, June.
    5. Daniel Egan & Qilun Zhu & Robert Prucka, 2023. "A Review of Reinforcement Learning-Based Powertrain Controllers: Effects of Agent Selection for Mixed-Continuity Control and Reward Formulation," Energies, MDPI, vol. 16(8), pages 1-31, April.
    6. Landry Frank Ineza Havugimana & Bolan Liu & Fanshuo Liu & Junwei Zhang & Ben Li & Peng Wan, 2023. "Review of Artificial Intelligent Algorithms for Engine Performance, Control, and Diagnosis," Energies, MDPI, vol. 16(3), pages 1-25, January.
    7. Keerthana Sivamayil & Elakkiya Rajasekar & Belqasem Aljafari & Srete Nikolovski & Subramaniyaswamy Vairavasundaram & Indragandhi Vairavasundaram, 2023. "A Systematic Study on Reinforcement Learning Based Applications," Energies, MDPI, vol. 16(3), pages 1-23, February.
    8. Miranda, Matheus H.R. & Silva, Fabrício L. & Lourenço, Maria A.M. & Eckert, Jony J. & Silva, Ludmila C.A., 2022. "Vehicle drivetrain and fuzzy controller optimization using a planar dynamics simulation based on a real-world driving cycle," Energy, Elsevier, vol. 257(C).
    9. Mudhafar Al-Saadi & Maher Al-Greer & Michael Short, 2023. "Reinforcement Learning-Based Intelligent Control Strategies for Optimal Power Management in Advanced Power Distribution Systems: A Survey," Energies, MDPI, vol. 16(4), pages 1-38, February.
    10. Yu, Xiao & Lin, Cheng & Zhao, Mingjie & Yi, Jiang & Su, Yue & Liu, Huimin, 2022. "Optimal energy management strategy of a novel hybrid dual-motor transmission system for electric vehicles," Applied Energy, Elsevier, vol. 321(C).
    11. Zhou, Yanting & Ma, Zhongjing & Zhang, Jinhui & Zou, Suli, 2022. "Data-driven stochastic energy management of multi energy system using deep reinforcement learning," Energy, Elsevier, vol. 261(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Guodong & Zou, Yuan & Zhang, Xudong & Liu, Teng & Wu, Jinlong & He, Dingbo, 2020. "Deep reinforcement learning based energy management for a hybrid electric vehicle," Energy, Elsevier, vol. 201(C).
    2. Liu, Teng & Tan, Wenhao & Tang, Xiaolin & Zhang, Jinwei & Xing, Yang & Cao, Dongpu, 2021. "Driving conditions-driven energy management strategies for hybrid electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Du, Guodong & Zou, Yuan & Zhang, Xudong & Kong, Zehui & Wu, Jinlong & He, Dingbo, 2019. "Intelligent energy management for hybrid electric tracked vehicles using online reinforcement learning," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Daniel Egan & Qilun Zhu & Robert Prucka, 2023. "A Review of Reinforcement Learning-Based Powertrain Controllers: Effects of Agent Selection for Mixed-Continuity Control and Reward Formulation," Energies, MDPI, vol. 16(8), pages 1-31, April.
    5. Sun, Wenjing & Zou, Yuan & Zhang, Xudong & Guo, Ningyuan & Zhang, Bin & Du, Guodong, 2022. "High robustness energy management strategy of hybrid electric vehicle based on improved soft actor-critic deep reinforcement learning," Energy, Elsevier, vol. 258(C).
    6. Zhou, Jianhao & Xue, Yuan & Xu, Da & Li, Chaoxiong & Zhao, Wanzhong, 2022. "Self-learning energy management strategy for hybrid electric vehicle via curiosity-inspired asynchronous deep reinforcement learning," Energy, Elsevier, vol. 242(C).
    7. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    8. Alessia Musa & Pier Giuseppe Anselma & Giovanni Belingardi & Daniela Anna Misul, 2023. "Energy Management in Hybrid Electric Vehicles: A Q-Learning Solution for Enhanced Drivability and Energy Efficiency," Energies, MDPI, vol. 17(1), pages 1-20, December.
    9. Han, Xuefeng & He, Hongwen & Wu, Jingda & Peng, Jiankun & Li, Yuecheng, 2019. "Energy management based on reinforcement learning with double deep Q-learning for a hybrid electric tracked vehicle," Applied Energy, Elsevier, vol. 254(C).
    10. Yang, Ningkang & Han, Lijin & Xiang, Changle & Liu, Hui & Li, Xunmin, 2021. "An indirect reinforcement learning based real-time energy management strategy via high-order Markov Chain model for a hybrid electric vehicle," Energy, Elsevier, vol. 236(C).
    11. Zhuang, Weichao & Li (Eben), Shengbo & Zhang, Xiaowu & Kum, Dongsuk & Song, Ziyou & Yin, Guodong & Ju, Fei, 2020. "A survey of powertrain configuration studies on hybrid electric vehicles," Applied Energy, Elsevier, vol. 262(C).
    12. Wang, Yue & Li, Keqiang & Zeng, Xiaohua & Gao, Bolin & Hong, Jichao, 2023. "Investigation of novel intelligent energy management strategies for connected HEB considering global planning of fixed-route information," Energy, Elsevier, vol. 263(PB).
    13. Zhou, Jianhao & Xue, Siwu & Xue, Yuan & Liao, Yuhui & Liu, Jun & Zhao, Wanzhong, 2021. "A novel energy management strategy of hybrid electric vehicle via an improved TD3 deep reinforcement learning," Energy, Elsevier, vol. 224(C).
    14. Qi, Chunyang & Zhu, Yiwen & Song, Chuanxue & Yan, Guangfu & Xiao, Feng & Da wang, & Zhang, Xu & Cao, Jingwei & Song, Shixin, 2022. "Hierarchical reinforcement learning based energy management strategy for hybrid electric vehicle," Energy, Elsevier, vol. 238(PA).
    15. Xiao, B. & Ruan, J. & Yang, W. & Walker, P.D. & Zhang, N., 2021. "A review of pivotal energy management strategies for extended range electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    16. Li, Cheng & Xu, Xiangyang & Zhu, Helong & Gan, Jiongpeng & Chen, Zhige & Tang, Xiaolin, 2024. "Research on car-following control and energy management strategy of hybrid electric vehicles in connected scene," Energy, Elsevier, vol. 293(C).
    17. Qicheng Xue & Xin Zhang & Teng Teng & Jibao Zhang & Zhiyuan Feng & Qinyang Lv, 2020. "A Comprehensive Review on Classification, Energy Management Strategy, and Control Algorithm for Hybrid Electric Vehicles," Energies, MDPI, vol. 13(20), pages 1-30, October.
    18. Hongzhe Li & Jinsong Kang & Cheng Li, 2024. "Energy Management Strategy Based on Reinforcement Learning and Frequency Decoupling for Fuel Cell Hybrid Powertrain," Energies, MDPI, vol. 17(8), pages 1-21, April.
    19. Yang, Ningkang & Ruan, Shumin & Han, Lijin & Liu, Hui & Guo, Lingxiong & Xiang, Changle, 2023. "Reinforcement learning-based real-time intelligent energy management for hybrid electric vehicles in a model predictive control framework," Energy, Elsevier, vol. 270(C).
    20. Qi, Chunyang & Song, Chuanxue & Xiao, Feng & Song, Shixin, 2022. "Generalization ability of hybrid electric vehicle energy management strategy based on reinforcement learning method," Energy, Elsevier, vol. 250(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:241:y:2022:i:c:s0360544221027729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.