Review of Artificial Intelligent Algorithms for Engine Performance, Control, and Diagnosis
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wong, Pak Kin & Wong, Ka In & Vong, Chi Man & Cheung, Chun Shun, 2015. "Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search," Renewable Energy, Elsevier, vol. 74(C), pages 640-647.
- Gennaro Nicola Bifulco & Francesco Galante & Luigi Pariota & Maria Russo Spena, 2015. "A Linear Model for the Estimation of Fuel Consumption and the Impact Evaluation of Advanced Driving Assistance Systems," Sustainability, MDPI, vol. 7(10), pages 1-18, October.
- Jakov Topić & Branimir Škugor & Joško Deur, 2022. "Neural Network-Based Prediction of Vehicle Fuel Consumption Based on Driving Cycle Data," Sustainability, MDPI, vol. 14(2), pages 1-12, January.
- Bozza, Fabio & De Bellis, Vincenzo & Teodosio, Luigi, 2016. "Potentials of cooled EGR and water injection for knock resistance and fuel consumption improvements of gasoline engines," Applied Energy, Elsevier, vol. 169(C), pages 112-125.
- Michael Ben-Chaim & Efraim Shmerling & Alon Kuperman, 2013. "Analytic Modeling of Vehicle Fuel Consumption," Energies, MDPI, vol. 6(1), pages 1-11, January.
- Fontaras, Georgios & Samaras, Zissis, 2010. "On the way to 130 g CO2/km--Estimating the future characteristics of the average European passenger car," Energy Policy, Elsevier, vol. 38(4), pages 1826-1833, April.
- Du, Guodong & Zou, Yuan & Zhang, Xudong & Guo, Lingxiong & Guo, Ningyuan, 2022. "Energy management for a hybrid electric vehicle based on prioritized deep reinforcement learning framework," Energy, Elsevier, vol. 241(C).
- Xinwei Wang & Pan Zhang & Wenzhi Gao & Yong Li & Yanjun Wang & Haoqian Pang, 2022. "Misfire Detection Using Crank Speed and Long Short-Term Memory Recurrent Neural Network," Energies, MDPI, vol. 15(1), pages 1-24, January.
- Silitonga, A.S. & Masjuki, H.H. & Ong, Hwai Chyuan & Sebayang, A.H. & Dharma, S. & Kusumo, F. & Siswantoro, J. & Milano, Jassinnee & Daud, Khairil & Mahlia, T.M.I. & Chen, Wei-Hsin & Sugiyanto, Bamban, 2018. "Evaluation of the engine performance and exhaust emissions of biodiesel-bioethanol-diesel blends using kernel-based extreme learning machine," Energy, Elsevier, vol. 159(C), pages 1075-1087.
- James B. Heaton & Nicholas Polson & Jan H. Witte, 2017. "Rejoinder to ‘Deep learning for finance: deep portfolios’," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(1), pages 19-21, January.
- Ghobadian, B. & Rahimi, H. & Nikbakht, A.M. & Najafi, G. & Yusaf, T.F., 2009. "Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network," Renewable Energy, Elsevier, vol. 34(4), pages 976-982.
- Jarosław Ziółkowski & Mateusz Oszczypała & Jerzy Małachowski & Joanna Szkutnik-Rogoż, 2021. "Use of Artificial Neural Networks to Predict Fuel Consumption on the Basis of Technical Parameters of Vehicles," Energies, MDPI, vol. 14(9), pages 1-23, May.
- Hocheol Jeon, 2019. "The Impact of Climate Change on Passenger Vehicle Fuel Consumption: Evidence from U.S. Panel Data," Energies, MDPI, vol. 12(23), pages 1-15, November.
- Giorgio Mancini & Jonas Asprion & Nicolò Cavina & Christopher Onder & Lino Guzzella, 2014. "Dynamic Feedforward Control of a Diesel Engine Based on Optimal Transient Compensation Maps," Energies, MDPI, vol. 7(8), pages 1-25, August.
- J. B. Heaton & N. G. Polson & J. H. Witte, 2017. "Deep learning for finance: deep portfolios," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(1), pages 3-12, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Iftikhar Ahmad & Adil Sana & Manabu Kano & Izzat Iqbal Cheema & Brenno C. Menezes & Junaid Shahzad & Zahid Ullah & Muzammil Khan & Asad Habib, 2021. "Machine Learning Applications in Biofuels’ Life Cycle: Soil, Feedstock, Production, Consumption, and Emissions," Energies, MDPI, vol. 14(16), pages 1-27, August.
- Moews, Ben & Ibikunle, Gbenga, 2020. "Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
- Doron Avramov & Si Cheng & Lior Metzker, 2023. "Machine Learning vs. Economic Restrictions: Evidence from Stock Return Predictability," Management Science, INFORMS, vol. 69(5), pages 2587-2619, May.
- Jiang, Kangqi & Du, Xinyi & Chen, Zhongfei, 2022. "Firms' digitalization and stock price crash risk," International Review of Financial Analysis, Elsevier, vol. 82(C).
- Zhengyong Jiang & Jeyan Thiayagalingam & Jionglong Su & Jinjun Liang, 2023. "CAD: Clustering And Deep Reinforcement Learning Based Multi-Period Portfolio Management Strategy," Papers 2310.01319, arXiv.org.
- Charyung Kim & Hyunwoo Lee & Yongsung Park & Cha-Lee Myung & Simsoo Park, 2016. "Study on the Criteria for the Determination of the Road Load Correlation for Automobiles and an Analysis of Key Factors," Energies, MDPI, vol. 9(8), pages 1-17, July.
- Uddin, Ajim & Yu, Dantong, 2020. "Latent factor model for asset pricing," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
- Axelsson, Birger & Song, Han-Suck, 2023. "Univariate Forecasting for REITs with Deep Learning: A Comparative Analysis with an ARIMA Model," Working Paper Series 23/10, Royal Institute of Technology, Department of Real Estate and Construction Management & Banking and Finance, revised 14 Nov 2023.
- Gharehghani, Ayatallah & Mirsalim, Mostafa & Hosseini, Reza, 2017. "Effects of waste fish oil biodiesel on diesel engine combustion characteristics and emission," Renewable Energy, Elsevier, vol. 101(C), pages 930-936.
- Werner Kristjanpoller & Kevin Michell & Cristian Llanos & Marcel C. Minutolo, 2025. "Incorporating causal notions to forecasting time series: a case study," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-22, December.
- Huh, Jeonggyu, 2020. "Measuring systematic risk with neural network factor model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
- Sang Il Lee & Seong Joon Yoo, 2019. "Multimodal Deep Learning for Finance: Integrating and Forecasting International Stock Markets," Papers 1903.06478, arXiv.org, revised Sep 2019.
- Chengyu Liu & Yan Li & Mingjie Fang & Feng Liu, 2023. "Using machine learning to explore the determinants of service satisfaction with online healthcare platforms during the COVID-19 pandemic," Service Business, Springer;Pan-Pacific Business Association, vol. 17(2), pages 449-476, June.
- Kolesnikova, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2019. "Can Deep Learning Predict Risky Retail Investors? A Case Study in Financial Risk Behavior Forecasting," IRTG 1792 Discussion Papers 2019-023, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Caldeira, João F. & Santos, André A.P. & Torrent, Hudson S., 2023. "Semiparametric portfolios: Improving portfolio performance by exploiting non-linearities in firm characteristics," Economic Modelling, Elsevier, vol. 122(C).
- Li, Weiping & Mei, Feng, 2020. "Asset returns in deep learning methods: An empirical analysis on SSE 50 and CSI 300," Research in International Business and Finance, Elsevier, vol. 54(C).
- Eric Benhamou & David Saltiel & Serge Tabachnik & Sui Kai Wong & François Chareyron, 2021. "Distinguish the indistinguishable: a Deep Reinforcement Learning approach for volatility targeting models," Working Papers hal-03202431, HAL.
- Weijia Peng & Chun Yao, 2023. "Sector-level equity returns predictability with machine learning and market contagion measure," Empirical Economics, Springer, vol. 65(4), pages 1761-1798, October.
- Hauzenberger, Niko & Huber, Florian & Klieber, Karin, 2023.
"Real-time inflation forecasting using non-linear dimension reduction techniques,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 901-921.
- Niko Hauzenberger & Florian Huber & Karin Klieber, 2020. "Real-time Inflation Forecasting Using Non-linear Dimension Reduction Techniques," Papers 2012.08155, arXiv.org, revised Dec 2021.
- Mirza, Nawazish & Rizvi, Syed Kumail Abbas & Naqvi, Bushra & Umar, Muhammad, 2024. "Inflation prediction in emerging economies: Machine learning and FX reserves integration for enhanced forecasting," International Review of Financial Analysis, Elsevier, vol. 94(C).
More about this item
Keywords
internal combustion engine; artificial intelligence algorithm; engine performance; engine control; engine diagnosis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1206-:d:1043880. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.