IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipcs0360544221025469.html
   My bibliography  Save this article

A fault diagnosis method for small pressurized water reactors based on long short-term memory networks

Author

Listed:
  • Wang, Pengfei
  • Zhang, Jiaxuan
  • Wan, Jiashuang
  • Wu, Shifa

Abstract

This paper proposes a sensor and actuator fault diagnosis method for small pressurized water reactors (SPWRs), with an innovative labeled fault dictionary established to map complex fault modes, using long short-term memory (LSTM) networks. It can directly learn features from multivariable time-series data and capture long-term dependencies through the cyclic behavior and gate mechanism of LSTM to realize the end-to-end fault diagnosis of SPWRs. Experimental results on a SPWR fault dataset show that the method can effectively diagnose the location, type, and extent of sensor and actuator faults from raw time-series signals with an average accuracy of 92.06% and outperforms three other widely-used fault diagnosis methods. Furthermore, the diagnosis results on the SPWR fault dataset injected with different noise signals demonstrate the strong noise immunity capability of the established LSTM network. Therefore, the proposed method is expected to achieve satisfactory fault diagnosis performances in actual operating environments of SPWRs.

Suggested Citation

  • Wang, Pengfei & Zhang, Jiaxuan & Wan, Jiashuang & Wu, Shifa, 2022. "A fault diagnosis method for small pressurized water reactors based on long short-term memory networks," Energy, Elsevier, vol. 239(PC).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pc:s0360544221025469
    DOI: 10.1016/j.energy.2021.122298
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221025469
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122298?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Jin Young & Lim, In Seop & Choi, Eun Jung & Kim, Min Soo, 2021. "Fault diagnosis of thermal management system in a polymer electrolyte membrane fuel cell," Energy, Elsevier, vol. 214(C).
    2. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    3. Zhe Dong, 2017. "Boolean Network-Based Sensor Selection with Application to the Fault Diagnosis of a Nuclear Plant," Energies, MDPI, vol. 10(12), pages 1-13, December.
    4. Cheng, Gong & Wang, Xinzhi & He, Yurong, 2021. "Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory neural network," Energy, Elsevier, vol. 232(C).
    5. Yao, Lei & Fang, Zhanpeng & Xiao, Yanqiu & Hou, Junjian & Fu, Zhijun, 2021. "An Intelligent Fault Diagnosis Method for Lithium Battery Systems Based on Grid Search Support Vector Machine," Energy, Elsevier, vol. 214(C).
    6. Zhou, Dengji & Yao, Qinbo & Wu, Hang & Ma, Shixi & Zhang, Huisheng, 2020. "Fault diagnosis of gas turbine based on partly interpretable convolutional neural networks," Energy, Elsevier, vol. 200(C).
    7. Li, Xingshuo & Liu, Jinfu & Bai, Mingliang & Li, Jiajia & Li, Xianling & Yan, Peigang & Yu, Daren, 2021. "An LSTM based method for stage performance degradation early warning with consideration of time-series information," Energy, Elsevier, vol. 226(C).
    8. Liu, Jiangyan & Li, Guannan & Liu, Bin & Li, Kuining & Chen, Huanxin, 2019. "Knowledge discovery of data-driven-based fault diagnostics for building energy systems: A case study of the building variable refrigerant flow system," Energy, Elsevier, vol. 174(C), pages 873-885.
    9. Shahid, Farah & Zameer, Aneela & Muneeb, Muhammad, 2021. "A novel genetic LSTM model for wind power forecast," Energy, Elsevier, vol. 223(C).
    10. Sun, Rongzhuo & Shi, Licheng & Yang, Xilian & Wang, Yuzhang & Zhao, Qunfei, 2020. "A coupling diagnosis method of sensors faults in gas turbine control system," Energy, Elsevier, vol. 205(C).
    11. Wang, Pengfei & Chen, Zhi & Liao, Longtao & Wan, Jiashuang & Wu, Shifa, 2020. "A multiple-model based internal model control method for power control of small pressurized water reactors," Energy, Elsevier, vol. 210(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Meng & Li, Jiangkuan & Li, Yankai & Wang, Xu & Jin, Chengyi & Chen, Junjie, 2023. "Generalization analysis and improvement of CNN-based nuclear power plant fault diagnosis model under varying power levels," Energy, Elsevier, vol. 282(C).
    2. Sinha, Aparna & Das, Debanjan & Palavalasa, Suneel Kumar, 2023. "dClink: A data-driven based clinkering prediction framework with automatic feature selection capability in 500 MW coal-fired boilers," Energy, Elsevier, vol. 276(C).
    3. Zhe Dong & Zhonghua Cheng & Yunlong Zhu & Xiaojin Huang & Yujie Dong & Zuoyi Zhang, 2023. "Review on the Recent Progress in Nuclear Plant Dynamical Modeling and Control," Energies, MDPI, vol. 16(3), pages 1-19, February.
    4. Jinrui Nan & Bo Deng & Wanke Cao & Jianjun Hu & Yuhua Chang & Yili Cai & Zhiwei Zhong, 2022. "Big Data-Based Early Fault Warning of Batteries Combining Short-Text Mining and Grey Correlation," Energies, MDPI, vol. 15(15), pages 1-19, July.
    5. Yang, Xilian & Zhao, Qunfei & Wang, Yuzhang & Cheng, Kanru, 2023. "Fault signal reconstruction for multi-sensors in gas turbine control systems based on prior knowledge from time series representation," Energy, Elsevier, vol. 262(PA).
    6. Hui, Jiuwu & Lee, Yi-Kuen & Yuan, Jingqi, 2023. "ESO-based adaptive event-triggered load following control design for a pressurized water reactor with samarium–promethium dynamics," Energy, Elsevier, vol. 271(C).
    7. Attallah, Omneya & Ibrahim, Rania A. & Zakzouk, Nahla E., 2023. "CAD system for inter-turn fault diagnosis of offshore wind turbines via multi-CNNs & feature selection," Renewable Energy, Elsevier, vol. 203(C), pages 870-880.
    8. Dong, Zhe & Li, Bowen & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2022. "Power-pressure coordinated control of modular high temperature gas-cooled reactors," Energy, Elsevier, vol. 252(C).
    9. Li, Jiangkuan & Lin, Meng & Li, Yankai & Wang, Xu, 2022. "Transfer learning network for nuclear power plant fault diagnosis with unlabeled data under varying operating conditions," Energy, Elsevier, vol. 254(PB).
    10. Dao, Fang & Zeng, Yun & Qian, Jing, 2024. "Fault diagnosis of hydro-turbine via the incorporation of bayesian algorithm optimized CNN-LSTM neural network," Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Yufeng & Tao, Jun & Zhao, Junyi & Sun, Gang & Yin, Kai & Zhai, Junyi, 2023. "Graph structure embedded with physical constraints-based information fusion network for interpretable fault diagnosis of aero-engine," Energy, Elsevier, vol. 283(C).
    2. Long, Zhenhua & Bai, Mingliang & Ren, Minghao & Liu, Jinfu & Yu, Daren, 2023. "Fault detection and isolation of aeroengine combustion chamber based on unscented Kalman filter method fusing artificial neural network," Energy, Elsevier, vol. 272(C).
    3. Liu, Zhi-Feng & Liu, You-Yuan & Chen, Xiao-Rui & Zhang, Shu-Rui & Luo, Xing-Fu & Li, Ling-Ling & Yang, Yi-Zhou & You, Guo-Dong, 2024. "A novel deep learning-based evolutionary model with potential attention and memory decay-enhancement strategy for short-term wind power point-interval forecasting," Applied Energy, Elsevier, vol. 360(C).
    4. Zelin Zhou & Yiyan Dai & Jun Xiao & Maoyi Liu & Jinxiang Zhang & Mingjin Zhang, 2022. "Research on Short-Time Wind Speed Prediction in Mountainous Areas Based on Improved ARIMA Model," Sustainability, MDPI, vol. 14(22), pages 1-12, November.
    5. Attallah, Omneya & Ibrahim, Rania A. & Zakzouk, Nahla E., 2023. "CAD system for inter-turn fault diagnosis of offshore wind turbines via multi-CNNs & feature selection," Renewable Energy, Elsevier, vol. 203(C), pages 870-880.
    6. Guo, Fei & Wu, Xiongwei & Liu, Lili & Ye, Jilei & Wang, Tao & Fu, Lijun & Wu, Yuping, 2023. "Prediction of remaining useful life and state of health of lithium batteries based on time series feature and Savitzky-Golay filter combined with gated recurrent unit neural network," Energy, Elsevier, vol. 270(C).
    7. Liu, Shuwei & Tian, Jianyan & Ji, Zhengxiong & Dai, Yuanyuan & Guo, Hengkuan & Yang, Shengqiang, 2024. "Research on multi-digital twin and its application in wind power forecasting," Energy, Elsevier, vol. 292(C).
    8. Bai, Mingliang & Yang, Xusheng & Liu, Jinfu & Liu, Jiao & Yu, Daren, 2021. "Convolutional neural network-based deep transfer learning for fault detection of gas turbine combustion chambers," Applied Energy, Elsevier, vol. 302(C).
    9. Shi, Qiao & Lin, Yanwen & Hao, Yongchao & Song, Zixuan & Zhou, Ziyue & Fu, Yuequn & Zhang, Zhisen & Wu, Jianyang, 2023. "Unconventional growth of methane hydrates: A molecular dynamics and machine learning study," Energy, Elsevier, vol. 282(C).
    10. Huang, Zhiwen & Li, Tong & Huang, Kexin & Ke, Hanbing & Lin, Mei & Wang, Qiuwang, 2022. "Predictions of flow and temperature fields in a T-junction based on dynamic mode decomposition and deep learning," Energy, Elsevier, vol. 261(PA).
    11. Huang, Yufeng & Tao, Jun & Sun, Gang & Wu, Tengyun & Yu, Liling & Zhao, Xinbin, 2023. "A novel digital twin approach based on deep multimodal information fusion for aero-engine fault diagnosis," Energy, Elsevier, vol. 270(C).
    12. Chen, Wenhe & Zhou, Hanting & Cheng, Longsheng & Xia, Min, 2023. "Prediction of regional wind power generation using a multi-objective optimized deep learning model with temporal pattern attention," Energy, Elsevier, vol. 278(PB).
    13. Wu, Zhou & Zeng, Shaoxiong & Jiang, Ruiqi & Zhang, Haoran & Yang, Zhile, 2023. "Explainable temporal dependence in multi-step wind power forecast via decomposition based chain echo state networks," Energy, Elsevier, vol. 270(C).
    14. Khazaei, Sahra & Ehsan, Mehdi & Soleymani, Soodabeh & Mohammadnezhad-Shourkaei, Hosein, 2022. "A high-accuracy hybrid method for short-term wind power forecasting," Energy, Elsevier, vol. 238(PC).
    15. Hui, Jiuwu & Yuan, Jingqi, 2022. "Neural network-based adaptive fault-tolerant control for load following of a MHTGR with prescribed performance and CRDM faults," Energy, Elsevier, vol. 257(C).
    16. Li, Guannan & Chen, Liang & Liu, Jiangyan & Fang, Xi, 2023. "Comparative study on deep transfer learning strategies for cross-system and cross-operation-condition building energy systems fault diagnosis," Energy, Elsevier, vol. 263(PD).
    17. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    18. Chen Zhang & Tao Yang, 2023. "Anomaly Detection for Wind Turbines Using Long Short-Term Memory-Based Variational Autoencoder Wasserstein Generation Adversarial Network under Semi-Supervised Training," Energies, MDPI, vol. 16(19), pages 1-18, October.
    19. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    20. Wang, Huan & Li, Yan-Fu & Zhang, Ying, 2023. "Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pc:s0360544221025469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.