IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224000409.html
   My bibliography  Save this article

Research on multi-digital twin and its application in wind power forecasting

Author

Listed:
  • Liu, Shuwei
  • Tian, Jianyan
  • Ji, Zhengxiong
  • Dai, Yuanyuan
  • Guo, Hengkuan
  • Yang, Shengqiang

Abstract

Digital twins are digital models that operate within the digital space to perform specific functions. It can positively impact the physical counterpart in terms of improved efficiency, reduced costs, increased safety, and reliability. However, most existing research has limited digital twins to a single digital twin model, and the inherent characteristics and practical applications of single digital twin models make it challenging to fully utilize their advantages in complex and dynamic environments. Therefore, this paper proposes the concept of a multi-digital twin (MDT), as well as its synergistic operation mechanism, and designs two specific implementation methods suitable for processing time series-related tasks: the single metric dynamic preference method and the multi-metrics dynamic fusion method both based on a time window. Then, the results of two experiments show that the average relative improvement of two methods in the MAE, RMSE, and R2 metrics were 7.83 %, 5.01 %, and 1.24 % in 2015, and 4.98 %, 2 %, and 0.29 % in 2017. This means that the proposed methods can improve the accuracy of wind power forecasting. The effectiveness of the MDT synergy operation mechanism is verified, providing new research ideas for digital twins to adapt to complex system changes.

Suggested Citation

  • Liu, Shuwei & Tian, Jianyan & Ji, Zhengxiong & Dai, Yuanyuan & Guo, Hengkuan & Yang, Shengqiang, 2024. "Research on multi-digital twin and its application in wind power forecasting," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224000409
    DOI: 10.1016/j.energy.2024.130269
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224000409
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130269?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexander Cochardt, 2019. "Scott E. Page: The model thinker—what you need to know to make data work for you," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 33(2), pages 209-211, June.
    2. You, Minglei & Wang, Qian & Sun, Hongjian & Castro, Iván & Jiang, Jing, 2022. "Digital twins based day-ahead integrated energy system scheduling under load and renewable energy uncertainties," Applied Energy, Elsevier, vol. 305(C).
    3. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    4. Shahid, Farah & Zameer, Aneela & Muneeb, Muhammad, 2021. "A novel genetic LSTM model for wind power forecast," Energy, Elsevier, vol. 223(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Han & Yan, Jie & Zhang, Jiawei & Liu, Shihua & Liu, Yongqian & Han, Shuang & Qu, Tonghui, 2024. "Short-term integrated forecasting method for wind power, solar power, and system load based on variable attention mechanism and multi-task learning," Energy, Elsevier, vol. 304(C).
    2. Xiao, Xiao & Zhang, Xuan & Song, Meiqi & Liu, Xiaojing & Huang, Qingyu, 2024. "NPP accident prevention: Integrated neural network for coupled multivariate time series prediction based on PSO and its application under uncertainty analysis for NPP data," Energy, Elsevier, vol. 305(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Song & Cai, Zhijian & Qin, Xinghuan & Shen, Xingao, 2024. "Comparative assessment and policy analysis of forecasting quarterly renewable energy demand: Fresh evidence from an innovative seasonal approach with superior matching algorithms," Applied Energy, Elsevier, vol. 367(C).
    2. Wang, Pengfei & Zhang, Jiaxuan & Wan, Jiashuang & Wu, Shifa, 2022. "A fault diagnosis method for small pressurized water reactors based on long short-term memory networks," Energy, Elsevier, vol. 239(PC).
    3. Shi, Qiao & Lin, Yanwen & Hao, Yongchao & Song, Zixuan & Zhou, Ziyue & Fu, Yuequn & Zhang, Zhisen & Wu, Jianyang, 2023. "Unconventional growth of methane hydrates: A molecular dynamics and machine learning study," Energy, Elsevier, vol. 282(C).
    4. Huang, Zhiwen & Li, Tong & Huang, Kexin & Ke, Hanbing & Lin, Mei & Wang, Qiuwang, 2022. "Predictions of flow and temperature fields in a T-junction based on dynamic mode decomposition and deep learning," Energy, Elsevier, vol. 261(PA).
    5. Liu, Zhi-Feng & Liu, You-Yuan & Chen, Xiao-Rui & Zhang, Shu-Rui & Luo, Xing-Fu & Li, Ling-Ling & Yang, Yi-Zhou & You, Guo-Dong, 2024. "A novel deep learning-based evolutionary model with potential attention and memory decay-enhancement strategy for short-term wind power point-interval forecasting," Applied Energy, Elsevier, vol. 360(C).
    6. Zelin Zhou & Yiyan Dai & Jun Xiao & Maoyi Liu & Jinxiang Zhang & Mingjin Zhang, 2022. "Research on Short-Time Wind Speed Prediction in Mountainous Areas Based on Improved ARIMA Model," Sustainability, MDPI, vol. 14(22), pages 1-12, November.
    7. Chen, Wenhe & Zhou, Hanting & Cheng, Longsheng & Xia, Min, 2023. "Prediction of regional wind power generation using a multi-objective optimized deep learning model with temporal pattern attention," Energy, Elsevier, vol. 278(PB).
    8. Wu, Zhou & Zeng, Shaoxiong & Jiang, Ruiqi & Zhang, Haoran & Yang, Zhile, 2023. "Explainable temporal dependence in multi-step wind power forecast via decomposition based chain echo state networks," Energy, Elsevier, vol. 270(C).
    9. Khazaei, Sahra & Ehsan, Mehdi & Soleymani, Soodabeh & Mohammadnezhad-Shourkaei, Hosein, 2022. "A high-accuracy hybrid method for short-term wind power forecasting," Energy, Elsevier, vol. 238(PC).
    10. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    11. Zhang, Yagang & Wang, Hui & Wang, Jingchao & Cheng, Xiaodan & Wang, Tong & Zhao, Zheng, 2024. "Ensemble optimization approach based on hybrid mode decomposition and intelligent technology for wind power prediction system," Energy, Elsevier, vol. 292(C).
    12. Xu, Jing & Wang, Xiaoying & Gu, Yujiong & Ma, Suxia, 2023. "A data-based day-ahead scheduling optimization approach for regional integrated energy systems with varying operating conditions," Energy, Elsevier, vol. 283(C).
    13. Ning, Jiajun & Xiong, Lixin, 2024. "Analysis of the dynamic evolution process of the digital transformation of renewable energy enterprises based on the cooperative and evolutionary game model," Energy, Elsevier, vol. 288(C).
    14. Wang, Xiaodi & Hao, Yan & Yang, Wendong, 2024. "Novel wind power ensemble forecasting system based on mixed-frequency modeling and interpretable base model selection strategy," Energy, Elsevier, vol. 297(C).
    15. Zhu, Xiaoxun & Liu, Ruizhang & Chen, Yao & Gao, Xiaoxia & Wang, Yu & Xu, Zixu, 2021. "Wind speed behaviors feather analysis and its utilization on wind speed prediction using 3D-CNN," Energy, Elsevier, vol. 236(C).
    16. Elianne Mora & Jenny Cifuentes & Geovanny Marulanda, 2021. "Short-Term Forecasting of Wind Energy: A Comparison of Deep Learning Frameworks," Energies, MDPI, vol. 14(23), pages 1-26, November.
    17. Lee, Yoonjae & Ha, Byeongmin & Hwangbo, Soonho, 2022. "Generative model-based hybrid forecasting model for renewable electricity supply using long short-term memory networks: A case study of South Korea's energy transition policy," Renewable Energy, Elsevier, vol. 200(C), pages 69-87.
    18. Zhu, Yilin & Xu, Yujie & Chen, Haisheng & Guo, Huan & Zhang, Hualiang & Zhou, Xuezhi & Shen, Haotian, 2023. "Optimal dispatch of a novel integrated energy system combined with multi-output organic Rankine cycle and hybrid energy storage," Applied Energy, Elsevier, vol. 343(C).
    19. Yanan Xue & Jinliang Yin & Xinhao Hou, 2024. "Short-Term Wind Power Prediction Based on Multi-Feature Domain Learning," Energies, MDPI, vol. 17(13), pages 1-25, July.
    20. Manisha Sawant & Rupali Patil & Tanmay Shikhare & Shreyas Nagle & Sakshi Chavan & Shivang Negi & Neeraj Dhanraj Bokde, 2022. "A Selective Review on Recent Advancements in Long, Short and Ultra-Short-Term Wind Power Prediction," Energies, MDPI, vol. 15(21), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224000409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.