IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v262y2023ipas036054422201893x.html
   My bibliography  Save this article

Fault signal reconstruction for multi-sensors in gas turbine control systems based on prior knowledge from time series representation

Author

Listed:
  • Yang, Xilian
  • Zhao, Qunfei
  • Wang, Yuzhang
  • Cheng, Kanru

Abstract

Improving efficiency through intelligence is the current development trend of industrial gas turbines. Among the fault statistics of gas turbines, the number of sensor fault is the highest during use. The fault signal diagnosis and reconstruction are of great significance to the efficient and safe operation of gas turbines. In order to eliminate the sensor fault signal and transmit the normal signal to the control system, a multivariate fault signal reconstruction method based on the prior knowledge of the time-series representation was proposed in this work. The proposed multivariate signal reconstruction method can reconstruct almost all fault cases with high accuracy by training only one model. Firstly, the prior knowledge is applied to improve the conventional time series data representation. Secondly, three steps are employed to utilize spatial or temporal information and obtain three intermediate data. The masks combine the third intermediate data and the original time series to obtain the final reconstruction results. Then, reconstruction data sets are built based on exhaust gas temperatures (EGTs) from real-world power plant to verify the effectiveness of the proposed method. Different evaluation metrics and visualization reveal the high accuracy results. Compared results with different reconstruction algorithms reflect both the robustness and high speed of this reconstruction method. Finally, three typical fault signal reconstruction cases reveal the generalizability of this model.

Suggested Citation

  • Yang, Xilian & Zhao, Qunfei & Wang, Yuzhang & Cheng, Kanru, 2023. "Fault signal reconstruction for multi-sensors in gas turbine control systems based on prior knowledge from time series representation," Energy, Elsevier, vol. 262(PA).
  • Handle: RePEc:eee:energy:v:262:y:2023:i:pa:s036054422201893x
    DOI: 10.1016/j.energy.2022.124996
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422201893X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124996?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brusaferri, Alessandro & Matteucci, Matteo & Portolani, Pietro & Vitali, Andrea, 2019. "Bayesian deep learning based method for probabilistic forecast of day-ahead electricity prices," Applied Energy, Elsevier, vol. 250(C), pages 1158-1175.
    2. Yang, Chunzhen & Liu, Jingquan & Zeng, Yuyun & Xie, Guangyao, 2019. "Real-time condition monitoring and fault detection of components based on machine-learning reconstruction model," Renewable Energy, Elsevier, vol. 133(C), pages 433-441.
    3. Liu, Zhenkun & Jiang, Ping & Zhang, Lifang & Niu, Xinsong, 2020. "A combined forecasting model for time series: Application to short-term wind speed forecasting," Applied Energy, Elsevier, vol. 259(C).
    4. Kim, Tae-Young & Cho, Sung-Bae, 2019. "Predicting residential energy consumption using CNN-LSTM neural networks," Energy, Elsevier, vol. 182(C), pages 72-81.
    5. Li, Dan & Jiang, Fuxin & Chen, Min & Qian, Tao, 2022. "Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks," Energy, Elsevier, vol. 238(PC).
    6. Karasu, Seçkin & Altan, Aytaç & Bekiros, Stelios & Ahmad, Wasim, 2020. "A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series," Energy, Elsevier, vol. 212(C).
    7. Shi, Huiting & Chai, Jian & Lu, Quanying & Zheng, Jiali & Wang, Shouyang, 2022. "The impact of China's low-carbon transition on economy, society and energy in 2030 based on CO2 emissions drivers," Energy, Elsevier, vol. 239(PD).
    8. Gallo, Marco & Costabile, Carmine & Sorrentino, Marco & Polverino, Pierpaolo & Pianese, Cesare, 2020. "Development and application of a comprehensive model-based methodology for fault mitigation of fuel cell powered systems," Applied Energy, Elsevier, vol. 279(C).
    9. Wang, Pengfei & Zhang, Jiaxuan & Wan, Jiashuang & Wu, Shifa, 2022. "A fault diagnosis method for small pressurized water reactors based on long short-term memory networks," Energy, Elsevier, vol. 239(PC).
    10. Zhu, Jun-Wei & Zhou, Qiao-Qian & Wu, Li-Bing & Xu, Jian-Ming & Wang, Xin, 2021. "Topology reconstruction based fault identification for uncertain multi-agent systems with application to multi-axis motion control system," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    11. Yang, Jie & Ma, Tieding & Ma, Kai & Yang, Bo & Guerrero, Josep M. & Liu, Zhixin, 2021. "Trading mechanism and pricing strategy of integrated energy systems based on credit rating and Bayesian game," Energy, Elsevier, vol. 232(C).
    12. Hui, Jiuwu & Yuan, Jingqi, 2022. "Neural network-based adaptive fault-tolerant control for load following of a MHTGR with prescribed performance and CRDM faults," Energy, Elsevier, vol. 257(C).
    13. Jinfu Liu & Zhenhua Long & Mingliang Bai & Linhai Zhu & Daren Yu, 2021. "A Comparative Study on Fault Detection Methods for Gas Turbine Combustion Systems," Energies, MDPI, vol. 14(2), pages 1-31, January.
    14. Wang, Yuzhang & Zhang, Qing & Li, Yixing & He, Ming & Weng, Shilie, 2022. "Research on the effectiveness of the key components in the HAT cycle," Applied Energy, Elsevier, vol. 306(PB).
    15. Van Gompel, Jonas & Spina, Domenico & Develder, Chris, 2022. "Satellite based fault diagnosis of photovoltaic systems using recurrent neural networks," Applied Energy, Elsevier, vol. 305(C).
    16. Sun, Rongzhuo & Shi, Licheng & Yang, Xilian & Wang, Yuzhang & Zhao, Qunfei, 2020. "A coupling diagnosis method of sensors faults in gas turbine control system," Energy, Elsevier, vol. 205(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Kanru & Zhang, Kunyu & Wang, Yuzhang & Yang, Chaoran & Li, Jiao & Wang, Yueheng, 2024. "Research on gas turbine health assessment method based on physical prior knowledge and spatial-temporal graph neural network," Applied Energy, Elsevier, vol. 367(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jianzhou & An, Yining & Li, Zhiwu & Lu, Haiyan, 2022. "A novel combined forecasting model based on neural networks, deep learning approaches, and multi-objective optimization for short-term wind speed forecasting," Energy, Elsevier, vol. 251(C).
    2. Zhe Dong & Zhonghua Cheng & Yunlong Zhu & Xiaojin Huang & Yujie Dong & Zuoyi Zhang, 2023. "Review on the Recent Progress in Nuclear Plant Dynamical Modeling and Control," Energies, MDPI, vol. 16(3), pages 1-19, February.
    3. Ai, Chunyu & He, Shan & Hu, Heng & Fan, Xiaochao & Wang, Weiqing, 2023. "Chaotic time series wind power interval prediction based on quadratic decomposition and intelligent optimization algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    4. Bai, Mingliang & Yang, Xusheng & Liu, Jinfu & Liu, Jiao & Yu, Daren, 2021. "Convolutional neural network-based deep transfer learning for fault detection of gas turbine combustion chambers," Applied Energy, Elsevier, vol. 302(C).
    5. Chen, Xi & Yu, Ruyi & Ullah, Sajid & Wu, Dianming & Li, Zhiqiang & Li, Qingli & Qi, Honggang & Liu, Jihui & Liu, Min & Zhang, Yundong, 2022. "A novel loss function of deep learning in wind speed forecasting," Energy, Elsevier, vol. 238(PB).
    6. Yu, Chuanjin & Li, Yongle & Chen, Qian & Lai, Xiaopan & Zhao, Liyang, 2022. "Matrix-based wavelet transformation embedded in recurrent neural networks for wind speed prediction," Applied Energy, Elsevier, vol. 324(C).
    7. Hui, Jiuwu & Lee, Yi-Kuen & Yuan, Jingqi, 2023. "ESO-based adaptive event-triggered load following control design for a pressurized water reactor with samarium–promethium dynamics," Energy, Elsevier, vol. 271(C).
    8. Qian, Jiaxin & Wu, Jiahui & Yao, Lei & Mahmut, Saniye & Zhang, Qiang, 2021. "Comprehensive performance evaluation of Wind-Solar-CCHP system based on emergy analysis and multi-objective decision method," Energy, Elsevier, vol. 230(C).
    9. Jinrui Nan & Bo Deng & Wanke Cao & Jianjun Hu & Yuhua Chang & Yili Cai & Zhiwei Zhong, 2022. "Big Data-Based Early Fault Warning of Batteries Combining Short-Text Mining and Grey Correlation," Energies, MDPI, vol. 15(15), pages 1-19, July.
    10. Liang, Tao & Zhao, Qing & Lv, Qingzhao & Sun, Hexu, 2021. "A novel wind speed prediction strategy based on Bi-LSTM, MOOFADA and transfer learning for centralized control centers," Energy, Elsevier, vol. 230(C).
    11. Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
    12. Juan D. Borrero & Jesus Mariscal, 2021. "Deterministic Chaos Detection and Simplicial Local Predictions Applied to Strawberry Production Time Series," Mathematics, MDPI, vol. 9(23), pages 1-18, November.
    13. Rajpal, Sheetal & Lakhyani, Navin & Singh, Ayush Kumar & Kohli, Rishav & Kumar, Naveen, 2021. "Using handpicked features in conjunction with ResNet-50 for improved detection of COVID-19 from chest X-ray images," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    14. Liu, Hui & Duan, Zhu & Chen, Chao, 2020. "Wind speed big data forecasting using time-variant multi-resolution ensemble model with clustering auto-encoder," Applied Energy, Elsevier, vol. 280(C).
    15. Tian, Zhongda & Chen, Hao, 2021. "Multi-step short-term wind speed prediction based on integrated multi-model fusion," Applied Energy, Elsevier, vol. 298(C).
    16. Hasankhani, Arezoo & Hakimi, Seyed Mehdi, 2021. "Stochastic energy management of smart microgrid with intermittent renewable energy resources in electricity market," Energy, Elsevier, vol. 219(C).
    17. Abubakar Ahmad Musa & Adamu Hussaini & Weixian Liao & Fan Liang & Wei Yu, 2023. "Deep Neural Networks for Spatial-Temporal Cyber-Physical Systems: A Survey," Future Internet, MDPI, vol. 15(6), pages 1-24, May.
    18. Jia, Wenlong & Yang, Fan & Li, Changjun & Huang, Ting & Song, Shuoshuo, 2021. "A unified thermodynamic framework to compute the hydrate formation conditions of acidic gas/water/alcohol/electrolyte mixtures up to 186.2 MPa," Energy, Elsevier, vol. 230(C).
    19. Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2022. "Interpretable deep learning models for hourly solar radiation prediction based on graph neural network and attention," Applied Energy, Elsevier, vol. 321(C).
    20. Karasu, Seçkin & Altan, Aytaç, 2022. "Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization," Energy, Elsevier, vol. 242(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:262:y:2023:i:pa:s036054422201893x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.