IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544224000975.html
   My bibliography  Save this article

Fault diagnosis of hydro-turbine via the incorporation of bayesian algorithm optimized CNN-LSTM neural network

Author

Listed:
  • Dao, Fang
  • Zeng, Yun
  • Qian, Jing

Abstract

The hydro-turbine is the core equipment of the hydropower station, and it is essential to diagnose and identify its faults. A fault diagnosis model based on Bayesian optimization (BO), which incorporates convolutional neural network (CNN) and long short-term memory (LSTM) methods for the hydro-turbine, is proposed (BO–CNN-LSTM). CNN adaptively extracts and down-scales fault features, fed into the LSTM model for feature learning and training. The BO algorithm is employed to address the challenge of model hyperparameter selection. A hydro-turbine fault experiment bench is constructed to train and validate the model. Experimental results demonstrate the superior performance of the proposed BO-CNN-LSTM model in hydro-turbine fault diagnosis, achieving accuracies of 92.7 %, 98.4 %, and 90.4 %, respectively, surpassing CNN, LSTM, and CNN-LSTM models. The BO-CNN-LSTM model improves accuracy by 5.5 %, 6.3 %, and 9.0 %, respectively, Compared to the unoptimized CNN-LSTM model. The BO algorithm is introduced to optimize CNN-LSTM from the perspective of acoustic vibration signals, which can be a beneficial supplement to the existing hydro-turbine fault diagnosis.

Suggested Citation

  • Dao, Fang & Zeng, Yun & Qian, Jing, 2024. "Fault diagnosis of hydro-turbine via the incorporation of bayesian algorithm optimized CNN-LSTM neural network," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544224000975
    DOI: 10.1016/j.energy.2024.130326
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224000975
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130326?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Yu-Zhi & Zhao, Xu-Dong & Xiang, Heng-Chao & Tsoutsanis, Elias, 2021. "A sequential model-based approach for gas turbine performance diagnostics," Energy, Elsevier, vol. 220(C).
    2. Bennett, Christopher J. & Stewart, Rodney A. & Lu, Jun Wei, 2014. "Forecasting low voltage distribution network demand profiles using a pattern recognition based expert system," Energy, Elsevier, vol. 67(C), pages 200-212.
    3. Avendaño-Valencia, Luis David & Abdallah, Imad & Chatzi, Eleni, 2021. "Virtual fatigue diagnostics of wake-affected wind turbine via Gaussian Process Regression," Renewable Energy, Elsevier, vol. 170(C), pages 539-561.
    4. Chen, Dongfang & Wu, Wenlong & Chang, Kuanyu & Li, Yuehua & Pei, Pucheng & Xu, Xiaoming, 2023. "Performance degradation prediction method of PEM fuel cells using bidirectional long short-term memory neural network based on Bayesian optimization," Energy, Elsevier, vol. 285(C).
    5. Coughlin, Katie & Murthi, Aditya & Eto, Joseph, 2014. "Multi-scale analysis of wind power and load time series data," Renewable Energy, Elsevier, vol. 68(C), pages 494-504.
    6. Kellil, N. & Aissat, A. & Mellit, A., 2023. "Fault diagnosis of photovoltaic modules using deep neural networks and infrared images under Algerian climatic conditions," Energy, Elsevier, vol. 263(PC).
    7. Li, Huanhuan & Xu, Beibei & Arzaghi, Ehsan & Abbassi, Rouzbeh & Chen, Diyi & Aggidis, George A. & Zhang, Jingjing & Patelli, Edoardo, 2020. "Transient safety assessment and risk mitigation of a hydroelectric generation system," Energy, Elsevier, vol. 196(C).
    8. Salahshoor, Karim & Kordestani, Mojtaba & Khoshro, Majid S., 2010. "Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers," Energy, Elsevier, vol. 35(12), pages 5472-5482.
    9. Sun, Lei & Liu, Tianyuan & Xie, Yonghui & Zhang, Di & Xia, Xinlei, 2021. "Real-time power prediction approach for turbine using deep learning techniques," Energy, Elsevier, vol. 233(C).
    10. Wang, Pengfei & Zhang, Jiaxuan & Wan, Jiashuang & Wu, Shifa, 2022. "A fault diagnosis method for small pressurized water reactors based on long short-term memory networks," Energy, Elsevier, vol. 239(PC).
    11. Du, Zhimin & Liang, Xinbin & Chen, Siliang & Zhu, Xu & Chen, Kang & Jin, Xinqiao, 2023. "Knowledge-infused deep learning diagnosis model with self-assessment for smart management in HVAC systems," Energy, Elsevier, vol. 263(PD).
    12. Jufri, Fauzan Hanif & Oh, Seongmun & Jung, Jaesung, 2019. "Development of Photovoltaic abnormal condition detection system using combined regression and Support Vector Machine," Energy, Elsevier, vol. 176(C), pages 457-467.
    13. Xue, Jie & Yip, Tsz Leung & Wu, Bing & Wu, Chaozhong & van Gelder, P.H.A.J.M., 2021. "A novel fuzzy Bayesian network-based MADM model for offshore wind turbine selection in busy waterways: An application to a case in China," Renewable Energy, Elsevier, vol. 172(C), pages 897-917.
    14. Rai, Amit & Shrivastava, Ashish & Jana, Kartick C., 2023. "Differential attention net: Multi-directed differential attention based hybrid deep learning model for solar power forecasting," Energy, Elsevier, vol. 263(PC).
    15. Wei, Zhiyuan & Zhang, Shuguang & Jafari, Soheil & Nikolaidis, Theoklis, 2022. "Self-enhancing model-based control for active transient protection and thrust response improvement of gas turbine aero-engines," Energy, Elsevier, vol. 242(C).
    16. Baheri, Ali & Ramaprabhu, Praveen & Vermillion, Christopher, 2018. "Iterative 3D layout optimization and parametric trade study for a reconfigurable ocean current turbine array using Bayesian Optimization," Renewable Energy, Elsevier, vol. 127(C), pages 1052-1063.
    17. Chang, XiaoLin & Liu, Xinghong & Zhou, Wei, 2010. "Hydropower in China at present and its further development," Energy, Elsevier, vol. 35(11), pages 4400-4406.
    18. Fang Dao & Yun Zeng & Yidong Zou & Xiang Li & Jing Qian, 2021. "Acoustic Vibration Approach for Detecting Faults in Hydroelectric Units: A Review," Energies, MDPI, vol. 14(23), pages 1-16, November.
    19. Padhy, M.K. & Saini, R.P., 2009. "Effect of size and concentration of silt particles on erosion of Pelton turbine buckets," Energy, Elsevier, vol. 34(10), pages 1477-1483.
    20. Yang, Guotian & Wang, Yingnan & Li, Xinli, 2020. "Prediction of the NOx emissions from thermal power plant using long-short term memory neural network," Energy, Elsevier, vol. 192(C).
    21. Sovacool, Benjamin K. & Walter, Götz, 2018. "Major hydropower states, sustainable development, and energy security: Insights from a preliminary cross-comparative assessment," Energy, Elsevier, vol. 142(C), pages 1074-1082.
    22. Bogdanov, Dmitrii & Ram, Manish & Aghahosseini, Arman & Gulagi, Ashish & Oyewo, Ayobami Solomon & Child, Michael & Caldera, Upeksha & Sadovskaia, Kristina & Farfan, Javier & De Souza Noel Simas Barbos, 2021. "Low-cost renewable electricity as the key driver of the global energy transition towards sustainability," Energy, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhi & Peng, Xianyong & Zhou, Huaichun & Cao, Shengxian & Huang, Wenbo & Yan, Weijie & Li, Kuangyu & Fan, Siyuan, 2024. "A dynamic modeling method using channel-selection convolutional neural network: A case study of NOx emission," Energy, Elsevier, vol. 290(C).
    2. Chen, Yu-Zhi & Tsoutsanis, Elias & Wang, Chen & Gou, Lin-Feng, 2023. "A time-series turbofan engine successive fault diagnosis under both steady-state and dynamic conditions," Energy, Elsevier, vol. 263(PD).
    3. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    4. Qinguo Zhang & Xiaojian Liu, 2022. "Optimization of the Quality of the Automatic Transmission Shift and the Power Transmission Characteristics," Energies, MDPI, vol. 15(13), pages 1-15, June.
    5. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    6. Wu, Junqi & Niu, Zhibin & Li, Xiang & Huang, Lizhen & Nielsen, Per Sieverts & Liu, Xiufeng, 2023. "Understanding multi-scale spatiotemporal energy consumption data: A visual analysis approach," Energy, Elsevier, vol. 263(PD).
    7. Bogdanov, Dmitrii & Breyer, Christian, 2024. "Role of smart charging of electric vehicles and vehicle-to-grid in integrated renewables-based energy systems on country level," Energy, Elsevier, vol. 301(C).
    8. Stua, Michele, 2013. "Evidence of the clean development mechanism impact on the Chinese electric power system's low-carbon transition," Energy Policy, Elsevier, vol. 62(C), pages 1309-1319.
    9. Jinrui Nan & Bo Deng & Wanke Cao & Jianjun Hu & Yuhua Chang & Yili Cai & Zhiwei Zhong, 2022. "Big Data-Based Early Fault Warning of Batteries Combining Short-Text Mining and Grey Correlation," Energies, MDPI, vol. 15(15), pages 1-19, July.
    10. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    11. Hasret Sahin & A. A. Solomon & Arman Aghahosseini & Christian Breyer, 2024. "Systemwide energy return on investment in a sustainable transition towards net zero power systems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Taghizadeh-Hesary, Farhad & Rasoulinezhad, Ehsan & Shahbaz, Muhammad & Vinh Vo, Xuan, 2021. "How energy transition and power consumption are related in Asian economies with different income levels?," Energy, Elsevier, vol. 237(C).
    13. Kumar, Deepak & Katoch, S.S., 2015. "Sustainability suspense of small hydropower projects: A study from western Himalayan region of India," Renewable Energy, Elsevier, vol. 76(C), pages 220-233.
    14. Zhao, Shuchun & Guo, Junheng & Dang, Xiuhu & Ai, Bingyan & Zhang, Minqing & Li, Wei & Zhang, Jinli, 2022. "Energy consumption, flow characteristics and energy-efficient design of cup-shape blade stirred tank reactors: Computational fluid dynamics and artificial neural network investigation," Energy, Elsevier, vol. 240(C).
    15. Kumar, Deepak & Katoch, S.S., 2014. "Harnessing ‘water tower’ into ‘power tower’: A small hydropower development study from an Indian prefecture in western Himalayas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 87-101.
    16. Róbert Csalódi & Tímea Czvetkó & Viktor Sebestyén & János Abonyi, 2022. "Sectoral Analysis of Energy Transition Paths and Greenhouse Gas Emissions," Energies, MDPI, vol. 15(21), pages 1-26, October.
    17. Ming, Zeng & Song, Xue & Mingjuan, Ma & Xiaoli, Zhu, 2013. "New energy bases and sustainable development in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 169-185.
    18. Tomasz Rokicki & Radosław Jadczak & Adam Kucharski & Piotr Bórawski & Aneta Bełdycka-Bórawska & András Szeberényi & Aleksandra Perkowska, 2022. "Changes in Energy Consumption and Energy Intensity in EU Countries as a Result of the COVID-19 Pandemic by Sector and Area Economy," Energies, MDPI, vol. 15(17), pages 1-26, August.
    19. Liu, Xinyu & Yang, Jianping & Yang, Chunhe & Zhang, Zheyuan & Chen, Weizhong, 2023. "Numerical simulation on cavern support of compressed air energy storage(CAES)considering thermo-mechanical coupling effect," Energy, Elsevier, vol. 282(C).
    20. Chung-Hao Chang & Shih-Fang Lo, 2022. "Impact Analysis of a National and Corporate Carbon Emission Reduction Target on Renewable Electricity Use: A Review," Energies, MDPI, vol. 15(5), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544224000975. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.