Convolutional neural network-based deep transfer learning for fault detection of gas turbine combustion chambers
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2021.117509
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Liu, Zhenkun & Jiang, Ping & Zhang, Lifang & Niu, Xinsong, 2020. "A combined forecasting model for time series: Application to short-term wind speed forecasting," Applied Energy, Elsevier, vol. 259(C).
- Yao, Lei & Fang, Zhanpeng & Xiao, Yanqiu & Hou, Junjian & Fu, Zhijun, 2021. "An Intelligent Fault Diagnosis Method for Lithium Battery Systems Based on Grid Search Support Vector Machine," Energy, Elsevier, vol. 214(C).
- Zhang, Zehan & Li, Shuanghong & Xiao, Yawen & Yang, Yupu, 2019. "Intelligent simultaneous fault diagnosis for solid oxide fuel cell system based on deep learning," Applied Energy, Elsevier, vol. 233, pages 930-942.
- Li, Bingxu & Cheng, Fanyong & Zhang, Xin & Cui, Can & Cai, Wenjian, 2021. "A novel semi-supervised data-driven method for chiller fault diagnosis with unlabeled data," Applied Energy, Elsevier, vol. 285(C).
- Tian, Jinpeng & Xiong, Rui & Shen, Weixiang & Lu, Jiahuan, 2021. "State-of-charge estimation of LiFePO4 batteries in electric vehicles: A deep-learning enabled approach," Applied Energy, Elsevier, vol. 291(C).
- Kang, Do Won & Kim, Tong Seop, 2018. "Model-based performance diagnostics of heavy-duty gas turbines using compressor map adaptation," Applied Energy, Elsevier, vol. 212(C), pages 1345-1359.
- Li, Xingshuo & Liu, Jinfu & Bai, Mingliang & Li, Jiajia & Li, Xianling & Yan, Peigang & Yu, Daren, 2021. "An LSTM based method for stage performance degradation early warning with consideration of time-series information," Energy, Elsevier, vol. 226(C).
- Orozco, Dimas José Rúa & Venturini, Osvaldo José & Escobar Palacio, José Carlos & del Olmo, Oscar Almazán, 2017. "A new methodology of thermodynamic diagnosis, using the thermoeconomic method together with an artificial neural network (ANN): A case study of an externally fired gas turbine (EFGT)," Energy, Elsevier, vol. 123(C), pages 20-35.
- Patnaik, Bhaskar & Mishra, Manohar & Bansal, Ramesh C. & Jena, Ranjan K., 2021. "MODWT-XGBoost based smart energy solution for fault detection and classification in a smart microgrid," Applied Energy, Elsevier, vol. 285(C).
- Jiao Liu & Jinfu Liu & Daren Yu & Myeongsu Kang & Weizhong Yan & Zhongqi Wang & Michael G. Pecht, 2018. "Fault Detection for Gas Turbine Hot Components Based on a Convolutional Neural Network," Energies, MDPI, vol. 11(8), pages 1-18, August.
- Tahan, Mohammadreza & Tsoutsanis, Elias & Muhammad, Masdi & Abdul Karim, Z.A., 2017. "Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review," Applied Energy, Elsevier, vol. 198(C), pages 122-144.
- Katikas, Loukas & Dimitriadis, Panayiotis & Koutsoyiannis, Demetris & Kontos, Themistoklis & Kyriakidis, Phaedon, 2021. "A stochastic simulation scheme for the long-term persistence, heavy-tailed and double periodic behavior of observational and reanalysis wind time-series," Applied Energy, Elsevier, vol. 295(C).
- Jinfu Liu & Zhenhua Long & Mingliang Bai & Linhai Zhu & Daren Yu, 2021. "A Comparative Study on Fault Detection Methods for Gas Turbine Combustion Systems," Energies, MDPI, vol. 14(2), pages 1-31, January.
- Moghaddass, Ramin & Sheng, Shuangwen, 2019. "An anomaly detection framework for dynamic systems using a Bayesian hierarchical framework," Applied Energy, Elsevier, vol. 240(C), pages 561-582.
- Hu, Qinghua & Zhang, Rujia & Zhou, Yucan, 2016. "Transfer learning for short-term wind speed prediction with deep neural networks," Renewable Energy, Elsevier, vol. 85(C), pages 83-95.
- Liu, Hui & Duan, Zhu, 2020. "A vanishing moment ensemble model for wind speed multi-step prediction with multi-objective base model selection," Applied Energy, Elsevier, vol. 261(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Cheng, Xianda & Zheng, Haoran & Yang, Qian & Zheng, Peiying & Dong, Wei, 2023. "Surrogate model-based real-time gas path fault diagnosis for gas turbines under transient conditions," Energy, Elsevier, vol. 278(PA).
- Irani, Fatemeh Negar & Soleimani, Mohammadjavad & Yadegar, Meysam & Meskin, Nader, 2024. "Deep transfer learning strategy in intelligent fault diagnosis of gas turbines based on the Koopman operator," Applied Energy, Elsevier, vol. 365(C).
- Long, Zhenhua & Bai, Mingliang & Ren, Minghao & Liu, Jinfu & Yu, Daren, 2023. "Fault detection and isolation of aeroengine combustion chamber based on unscented Kalman filter method fusing artificial neural network," Energy, Elsevier, vol. 272(C).
- Yan, Peiliang & Fan, Weijun & Zhang, Rongchun, 2023. "Predicting the NOx emissions of low heat value gas rich-quench-lean combustor via three integrated learning algorithms with Bayesian optimization," Energy, Elsevier, vol. 273(C).
- Zhao, Junjie & Li, Yi-Guang & Sampath, Suresh, 2023. "A hierarchical structure built on physical and data-based information for intelligent aero-engine gas path diagnostics," Applied Energy, Elsevier, vol. 332(C).
- Li, Guannan & Chen, Liang & Liu, Jiangyan & Fang, Xi, 2023. "Comparative study on deep transfer learning strategies for cross-system and cross-operation-condition building energy systems fault diagnosis," Energy, Elsevier, vol. 263(PD).
- Huang, Yufeng & Tao, Jun & Zhao, Junyi & Sun, Gang & Yin, Kai & Zhai, Junyi, 2023. "Graph structure embedded with physical constraints-based information fusion network for interpretable fault diagnosis of aero-engine," Energy, Elsevier, vol. 283(C).
- Zhu, Yunlong & Dong, Zhe & Cheng, Zhonghua & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Neural network extended state-observer for energy system monitoring," Energy, Elsevier, vol. 263(PA).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Long, Zhenhua & Bai, Mingliang & Ren, Minghao & Liu, Jinfu & Yu, Daren, 2023. "Fault detection and isolation of aeroengine combustion chamber based on unscented Kalman filter method fusing artificial neural network," Energy, Elsevier, vol. 272(C).
- Huang, Yufeng & Tao, Jun & Zhao, Junyi & Sun, Gang & Yin, Kai & Zhai, Junyi, 2023. "Graph structure embedded with physical constraints-based information fusion network for interpretable fault diagnosis of aero-engine," Energy, Elsevier, vol. 283(C).
- Mingliang Bai & Jinfu Liu & Yujia Ma & Xinyu Zhao & Zhenhua Long & Daren Yu, 2020. "Long Short-Term Memory Network-Based Normal Pattern Group for Fault Detection of Three-Shaft Marine Gas Turbine," Energies, MDPI, vol. 14(1), pages 1-22, December.
- Zhao, Junjie & Li, Yi-Guang & Sampath, Suresh, 2023. "A hierarchical structure built on physical and data-based information for intelligent aero-engine gas path diagnostics," Applied Energy, Elsevier, vol. 332(C).
- Chen, Yu-Zhi & Zhao, Xu-Dong & Xiang, Heng-Chao & Tsoutsanis, Elias, 2021. "A sequential model-based approach for gas turbine performance diagnostics," Energy, Elsevier, vol. 220(C).
- Liang, Tao & Zhao, Qing & Lv, Qingzhao & Sun, Hexu, 2021. "A novel wind speed prediction strategy based on Bi-LSTM, MOOFADA and transfer learning for centralized control centers," Energy, Elsevier, vol. 230(C).
- Liu, Hui & Duan, Zhu & Chen, Chao, 2020. "Wind speed big data forecasting using time-variant multi-resolution ensemble model with clustering auto-encoder," Applied Energy, Elsevier, vol. 280(C).
- Wang, Pengfei & Zhang, Jiaxuan & Wan, Jiashuang & Wu, Shifa, 2022. "A fault diagnosis method for small pressurized water reactors based on long short-term memory networks," Energy, Elsevier, vol. 239(PC).
- Linhai Zhu & Jinfu Liu & Yujia Ma & Weixing Zhou & Daren Yu, 2020. "A Coupling Diagnosis Method for Sensor Faults Detection, Isolation and Estimation of Gas Turbine Engines," Energies, MDPI, vol. 13(18), pages 1-19, September.
- Jinfu Liu & Zhenhua Long & Mingliang Bai & Linhai Zhu & Daren Yu, 2021. "A Comparative Study on Fault Detection Methods for Gas Turbine Combustion Systems," Energies, MDPI, vol. 14(2), pages 1-31, January.
- Chen, Xi & Yu, Ruyi & Ullah, Sajid & Wu, Dianming & Li, Zhiqiang & Li, Qingli & Qi, Honggang & Liu, Jihui & Liu, Min & Zhang, Yundong, 2022. "A novel loss function of deep learning in wind speed forecasting," Energy, Elsevier, vol. 238(PB).
- Liu, Hui & Yang, Rui & Wang, Tiantian & Zhang, Lei, 2021. "A hybrid neural network model for short-term wind speed forecasting based on decomposition, multi-learner ensemble, and adaptive multiple error corrections," Renewable Energy, Elsevier, vol. 165(P1), pages 573-594.
- Linhai Zhu & Jinfu Liu & Yujia Ma & Weixing Zhou & Daren Yu, 2020. "A Corrected Equilibrium Manifold Expansion Model for Gas Turbine System Simulation and Control," Energies, MDPI, vol. 13(18), pages 1-18, September.
- Yang, Xilian & Zhao, Qunfei & Wang, Yuzhang & Cheng, Kanru, 2023. "Fault signal reconstruction for multi-sensors in gas turbine control systems based on prior knowledge from time series representation," Energy, Elsevier, vol. 262(PA).
- Ding, Lin & Bai, Yulong & Liu, Ming-De & Fan, Man-Hong & Yang, Jie, 2022. "Predicting short wind speed with a hybrid model based on a piecewise error correction method and Elman neural network," Energy, Elsevier, vol. 244(PA).
- Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
- Xu, Zifei & Bashir, Musa & Yang, Yang & Wang, Xinyu & Wang, Jin & Ekere, Nduka & Li, Chun, 2022. "Multisensory collaborative damage diagnosis of a 10 MW floating offshore wind turbine tendons using multi-scale convolutional neural network with attention mechanism," Renewable Energy, Elsevier, vol. 199(C), pages 21-34.
- Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
- Cui, Binghan & Wang, Han & Li, Renlong & Xiang, Lizhi & Zhao, Huaian & Xiao, Rang & Li, Sai & Liu, Zheng & Yin, Geping & Cheng, Xinqun & Ma, Yulin & Huo, Hua & Zuo, Pengjian & Lu, Taolin & Xie, Jingyi, 2024. "Ultra-early prediction of lithium-ion battery performance using mechanism and data-driven fusion model," Applied Energy, Elsevier, vol. 353(PA).
- Kim, Jeong Ho & Kim, Tong Seop, 2019. "A new approach to generate turbine map data in the sub-idle operation regime of gas turbines," Energy, Elsevier, vol. 173(C), pages 772-784.
More about this item
Keywords
Fault detection; Gas turbine combustion chambers; Convolutional neural network; Deep transfer learning; Visualization analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:302:y:2021:i:c:s0306261921008916. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.