Fault diagnosis of gas turbine based on partly interpretable convolutional neural networks
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2020.117467
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Palmé, Thomas & Fast, Magnus & Thern, Marcus, 2011. "Gas turbine sensor validation through classification with artificial neural networks," Applied Energy, Elsevier, vol. 88(11), pages 3898-3904.
- Shirley, Rebekah & Kammen, Daniel, 2013. "Renewable energy sector development in the Caribbean: Current trends and lessons from history," Energy Policy, Elsevier, vol. 57(C), pages 244-252.
- Fast, M. & Assadi, M. & De, S., 2009. "Development and multi-utility of an ANN model for an industrial gas turbine," Applied Energy, Elsevier, vol. 86(1), pages 9-17, January.
- Zhou, Dengji & Yu, Ziqiang & Zhang, Huisheng & Weng, Shilie, 2016. "A novel grey prognostic model based on Markov process and grey incidence analysis for energy conversion equipment degradation," Energy, Elsevier, vol. 109(C), pages 420-429.
- Zhou, Dengji & Zhang, Huisheng & Weng, Shilie, 2014. "A novel prognostic model of performance degradation trend for power machinery maintenance," Energy, Elsevier, vol. 78(C), pages 740-746.
- Adams, Samuel & Klobodu, Edem Kwame Mensah & Apio, Alfred, 2018. "Renewable and non-renewable energy, regime type and economic growth," Renewable Energy, Elsevier, vol. 125(C), pages 755-767.
- Tahan, Mohammadreza & Tsoutsanis, Elias & Muhammad, Masdi & Abdul Karim, Z.A., 2017. "Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review," Applied Energy, Elsevier, vol. 198(C), pages 122-144.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rahmoune, Mohamed Ben & Hafaifa, Ahmed & Kouzou, Abdellah & Chen, XiaoQi & Chaibet, Ahmed, 2021. "Gas turbine monitoring using neural network dynamic nonlinear autoregressive with external exogenous input modelling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 23-47.
- Feng Lu & Jipeng Jiang & Jinquan Huang & Xiaojie Qiu, 2018. "An Iterative Reduced KPCA Hidden Markov Model for Gas Turbine Performance Fault Diagnosis," Energies, MDPI, vol. 11(7), pages 1-21, July.
- Nikpey, H. & Assadi, M. & Breuhaus, P., 2013. "Development of an optimized artificial neural network model for combined heat and power micro gas turbines," Applied Energy, Elsevier, vol. 108(C), pages 137-148.
- Irani, Fatemeh Negar & Soleimani, Mohammadjavad & Yadegar, Meysam & Meskin, Nader, 2024. "Deep transfer learning strategy in intelligent fault diagnosis of gas turbines based on the Koopman operator," Applied Energy, Elsevier, vol. 365(C).
- Homam Nikpey Somehsaraei & Susmita Ghosh & Sayantan Maity & Payel Pramanik & Sudipta De & Mohsen Assadi, 2020. "Automated Data Filtering Approach for ANN Modeling of Distributed Energy Systems: Exploring the Application of Machine Learning," Energies, MDPI, vol. 13(14), pages 1-15, July.
- Tsoutsanis, Elias & Meskin, Nader, 2017. "Derivative-driven window-based regression method for gas turbine performance prognostics," Energy, Elsevier, vol. 128(C), pages 302-311.
- Chen, Yu-Zhi & Tsoutsanis, Elias & Wang, Chen & Gou, Lin-Feng, 2023. "A time-series turbofan engine successive fault diagnosis under both steady-state and dynamic conditions," Energy, Elsevier, vol. 263(PD).
- Damilola Elizabeth Babatunde & Ambrose Anozie & James Omoleye, 2020. "Artificial Neural Network and its Applications in the Energy Sector An Overview," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 250-264.
- Weichao Yu & Xianbin Zheng & Weihe Huang & Qingwen Cai & Jie Guo & Jili Xu & Yang Liu & Jing Gong & Hong Yang, 2022. "A Data-Driven Methodology for the Reliability Analysis of the Natural Gas Compressor Unit Considering Multiple Failure Modes," Energies, MDPI, vol. 15(10), pages 1-18, May.
- Kiaee, Mehrdad & Tousi, A.M., 2021. "Vector-based deterioration index for gas turbine gas-path prognostics modeling framework," Energy, Elsevier, vol. 216(C).
- Tahan, Mohammadreza & Tsoutsanis, Elias & Muhammad, Masdi & Abdul Karim, Z.A., 2017. "Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review," Applied Energy, Elsevier, vol. 198(C), pages 122-144.
- Chen, Yu-Zhi & Zhao, Xu-Dong & Xiang, Heng-Chao & Tsoutsanis, Elias, 2021. "A sequential model-based approach for gas turbine performance diagnostics," Energy, Elsevier, vol. 220(C).
- Pan Zheng & Wenqin Zhao & Yaqiong Lv & Lu Qian & Yifan Li, 2022. "Health Status-Based Predictive Maintenance Decision-Making via LSTM and Markov Decision Process," Mathematics, MDPI, vol. 11(1), pages 1-13, December.
- Shirley, Rebekah G. & Word, Jettie, 2018. "Rights, rivers and renewables: Lessons from hydropower conflict in Borneo on the role of cultural politics in energy planning for Small Island Developing States," Utilities Policy, Elsevier, vol. 55(C), pages 189-199.
- Jie, Huo & Khan, Irfan & Alharthi, Majed & Zafar, Muhammad Wasif & Saeed, Asif, 2023. "Sustainable energy policy, socio-economic development, and ecological footprint: The economic significance of natural resources, population growth, and industrial development," Utilities Policy, Elsevier, vol. 81(C).
- Akan, Taner & Gündüz, Halil İbrahim & Emirmahmutoğlu, Furkan & Işık, Ali Haydar, 2023. "Disaggregating renewable energy-growth nexus: W-ARDL and W-Toda-Yamamoto approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Zhou, Dengji & Yu, Ziqiang & Zhang, Huisheng & Weng, Shilie, 2016. "A novel grey prognostic model based on Markov process and grey incidence analysis for energy conversion equipment degradation," Energy, Elsevier, vol. 109(C), pages 420-429.
- Kang, Sang Hoon & Islam, Faridul & Kumar Tiwari, Aviral, 2019. "The dynamic relationships among CO2 emissions, renewable and non-renewable energy sources, and economic growth in India: Evidence from time-varying Bayesian VAR model," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 90-101.
- Mingliang Bai & Jinfu Liu & Yujia Ma & Xinyu Zhao & Zhenhua Long & Daren Yu, 2020. "Long Short-Term Memory Network-Based Normal Pattern Group for Fault Detection of Three-Shaft Marine Gas Turbine," Energies, MDPI, vol. 14(1), pages 1-22, December.
- Qu, Zhijian & Xu, Juan & Wang, Zixiao & Chi, Rui & Liu, Hanxin, 2021. "Prediction of electricity generation from a combined cycle power plant based on a stacking ensemble and its hyperparameter optimization with a grid-search method," Energy, Elsevier, vol. 227(C).
More about this item
Keywords
Gas turbine; Fault diagnosis; Convolutional neural network; Extreme gradient boosting; Interpretation; Field data;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:200:y:2020:i:c:s0360544220305740. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.