Comparative study on deep transfer learning strategies for cross-system and cross-operation-condition building energy systems fault diagnosis
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2022.125943
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Eom, Yong Hwan & Yoo, Jin Woo & Hong, Sung Bin & Kim, Min Soo, 2019. "Refrigerant charge fault detection method of air source heat pump system using convolutional neural network for energy saving," Energy, Elsevier, vol. 187(C).
- Fan, Cheng & Sun, Yongjun & Xiao, Fu & Ma, Jie & Lee, Dasheng & Wang, Jiayuan & Tseng, Yen Chieh, 2020. "Statistical investigations of transfer learning-based methodology for short-term building energy predictions," Applied Energy, Elsevier, vol. 262(C).
- Hong, Joonki & Lee, Dongheon & Jeong, Eui-Rim & Yi, Yung, 2020. "Towards the swift prediction of the remaining useful life of lithium-ion batteries with end-to-end deep learning," Applied Energy, Elsevier, vol. 278(C).
- Wang, Chendong & Yuan, Jianjuan & Huang, Ke & Zhang, Ji & Zheng, Lihong & Zhou, Zhihua & Zhang, Yufeng, 2022. "Research on thermal load prediction of district heating station based on transfer learning," Energy, Elsevier, vol. 239(PE).
- Li, Jiangkuan & Lin, Meng & Li, Yankai & Wang, Xu, 2022. "Transfer learning network for nuclear power plant fault diagnosis with unlabeled data under varying operating conditions," Energy, Elsevier, vol. 254(PB).
- Du, Zhimin & Chen, Ling & Jin, Xinqiao, 2017. "Data-driven based reliability evaluation for measurements of sensors in a vapor compression system," Energy, Elsevier, vol. 122(C), pages 237-248.
- Chen, Kang & Zhu, Xu & Anduv, Burkay & Jin, Xinqiao & Du, Zhimin, 2022. "Digital twins model and its updating method for heating, ventilation and air conditioning system using broad learning system algorithm," Energy, Elsevier, vol. 251(C).
- Hong, Ying-Yi & Pula, Rolando A., 2022. "Detection and classification of faults in photovoltaic arrays using a 3D convolutional neural network," Energy, Elsevier, vol. 246(C).
- Chen, Jianli & Zhang, Liang & Li, Yanfei & Shi, Yifu & Gao, Xinghua & Hu, Yuqing, 2022. "A review of computing-based automated fault detection and diagnosis of heating, ventilation and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Eom, Yong Hwan & Chung, Yoong & Park, Minsu & Hong, Sung Bin & Kim, Min Soo, 2021. "Deep learning-based prediction method on performance change of air source heat pump system under frosting conditions," Energy, Elsevier, vol. 228(C).
- Liu, Zengkai & Liu, Yonghong & Zhang, Dawei & Cai, Baoping & Zheng, Chao, 2015. "Fault diagnosis for a solar assisted heat pump system under incomplete data and expert knowledge," Energy, Elsevier, vol. 87(C), pages 41-48.
- Yao, Lei & Fang, Zhanpeng & Xiao, Yanqiu & Hou, Junjian & Fu, Zhijun, 2021. "An Intelligent Fault Diagnosis Method for Lithium Battery Systems Based on Grid Search Support Vector Machine," Energy, Elsevier, vol. 214(C).
- Carballo, Jose A. & Bonilla, Javier & Berenguel, Manuel & Fernández-Reche, Jesús & García, Ginés, 2019. "New approach for solar tracking systems based on computer vision, low cost hardware and deep learning," Renewable Energy, Elsevier, vol. 133(C), pages 1158-1166.
- Bode, Gerrit & Thul, Simon & Baranski, Marc & Müller, Dirk, 2020. "Real-world application of machine-learning-based fault detection trained with experimental data," Energy, Elsevier, vol. 198(C).
- Ran, Fengming & Gao, Dian-ce & Zhang, Xu & Chen, Shuyue, 2020. "A virtual sensor based self-adjusting control for HVAC fast demand response in commercial buildings towards smart grid applications," Applied Energy, Elsevier, vol. 269(C).
- Bai, Mingliang & Yang, Xusheng & Liu, Jinfu & Liu, Jiao & Yu, Daren, 2021. "Convolutional neural network-based deep transfer learning for fault detection of gas turbine combustion chambers," Applied Energy, Elsevier, vol. 302(C).
- Chung, Won Hee & Gu, Yeong Hyeon & Yoo, Seong Joon, 2022. "District heater load forecasting based on machine learning and parallel CNN-LSTM attention," Energy, Elsevier, vol. 246(C).
- Wang, Yize & Liu, Zhenqing, 2021. "Proposal of novel analytical wake model and GPU-accelerated array optimization method for oscillating wave surge energy converter," Renewable Energy, Elsevier, vol. 179(C), pages 563-583.
- Zhao, Yang & Li, Tingting & Zhang, Xuejun & Zhang, Chaobo, 2019. "Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 85-101.
- Liu, Jiangyan & Li, Guannan & Liu, Bin & Li, Kuining & Chen, Huanxin, 2019. "Knowledge discovery of data-driven-based fault diagnostics for building energy systems: A case study of the building variable refrigerant flow system," Energy, Elsevier, vol. 174(C), pages 873-885.
- Frank, Stephen & Jin, Xin & Studer, Daniel & Farthing, Amanda, 2018. "Assessing barriers and research challenges for automated fault detection and diagnosis technology for small commercial buildings in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 489-499.
- Li, Yanting & Jiang, Wenbo & Zhang, Guangyao & Shu, Lianjie, 2021. "Wind turbine fault diagnosis based on transfer learning and convolutional autoencoder with small-scale data," Renewable Energy, Elsevier, vol. 171(C), pages 103-115.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sulaiman, Mohd Herwan & Mustaffa, Zuriani, 2024. "Chiller energy prediction in commercial building: A metaheuristic-Enhanced deep learning approach," Energy, Elsevier, vol. 297(C).
- Chen, Siliang & Ge, Wei & Liang, Xinbin & Jin, Xinqiao & Du, Zhimin, 2024. "Lifelong learning with deep conditional generative replay for dynamic and adaptive modeling towards net zero emissions target in building energy system," Applied Energy, Elsevier, vol. 353(PB).
- Liu, Zeyu & Li, Hang & Hou, Kai & Xu, Xiandong & Jia, Hongjie & Zhu, Lewei & Mu, Yunfei, 2023. "Risk assessment and alleviation of regional integrated energy system considering cross-system failures," Applied Energy, Elsevier, vol. 350(C).
- Zhong, Fangliang & Calautit, John Kaiser & Wu, Yupeng, 2023. "Fault data seasonal imbalance and insufficiency impacts on data-driven heating, ventilation and air-conditioning fault detection and diagnosis performances for energy-efficient building operations," Energy, Elsevier, vol. 282(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Jianli & Zhang, Liang & Li, Yanfei & Shi, Yifu & Gao, Xinghua & Hu, Yuqing, 2022. "A review of computing-based automated fault detection and diagnosis of heating, ventilation and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Zhong, Fangliang & Calautit, John Kaiser & Wu, Yupeng, 2023. "Fault data seasonal imbalance and insufficiency impacts on data-driven heating, ventilation and air-conditioning fault detection and diagnosis performances for energy-efficient building operations," Energy, Elsevier, vol. 282(C).
- Bode, Gerrit & Thul, Simon & Baranski, Marc & Müller, Dirk, 2020. "Real-world application of machine-learning-based fault detection trained with experimental data," Energy, Elsevier, vol. 198(C).
- Mario Pérez-Gomariz & Antonio López-Gómez & Fernando Cerdán-Cartagena, 2023. "Artificial Neural Networks as Artificial Intelligence Technique for Energy Saving in Refrigeration Systems—A Review," Clean Technol., MDPI, vol. 5(1), pages 1-21, January.
- Simon P. Melgaard & Kamilla H. Andersen & Anna Marszal-Pomianowska & Rasmus L. Jensen & Per K. Heiselberg, 2022. "Fault Detection and Diagnosis Encyclopedia for Building Systems: A Systematic Review," Energies, MDPI, vol. 15(12), pages 1-50, June.
- Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
- Li, Chuang & Li, Guojie & Wang, Keyou & Han, Bei, 2022. "A multi-energy load forecasting method based on parallel architecture CNN-GRU and transfer learning for data deficient integrated energy systems," Energy, Elsevier, vol. 259(C).
- Li, Tingting & Zhou, Yangze & Zhao, Yang & Zhang, Chaobo & Zhang, Xuejun, 2022. "A hierarchical object oriented Bayesian network-based fault diagnosis method for building energy systems," Applied Energy, Elsevier, vol. 306(PB).
- Huang, Yufeng & Tao, Jun & Zhao, Junyi & Sun, Gang & Yin, Kai & Zhai, Junyi, 2023. "Graph structure embedded with physical constraints-based information fusion network for interpretable fault diagnosis of aero-engine," Energy, Elsevier, vol. 283(C).
- Bao, Zhengyi & Nie, Jiahao & Lin, Huipin & Jiang, Jiahao & He, Zhiwei & Gao, Mingyu, 2023. "A global–local context embedding learning based sequence-free framework for state of health estimation of lithium-ion battery," Energy, Elsevier, vol. 282(C).
- Guo, Yabin & Li, Yuduo & Li, Weilin, 2023. "On-site fault experiment and diagnosis research of the carbon dioxide transcritical heat pump system for energy saving," Energy, Elsevier, vol. 274(C).
- Fang, Xi & Gong, Guangcai & Li, Guannan & Chun, Liang & Li, Wenqiang & Peng, Pei, 2021. "A hybrid deep transfer learning strategy for short term cross-building energy prediction," Energy, Elsevier, vol. 215(PB).
- Chen, Siliang & Ge, Wei & Liang, Xinbin & Jin, Xinqiao & Du, Zhimin, 2024. "Lifelong learning with deep conditional generative replay for dynamic and adaptive modeling towards net zero emissions target in building energy system," Applied Energy, Elsevier, vol. 353(PB).
- Schreiber, Thomas & Netsch, Christoph & Eschweiler, Sören & Wang, Tianyuan & Storek, Thomas & Baranski, Marc & Müller, Dirk, 2021. "Application of data-driven methods for energy system modelling demonstrated on an adaptive cooling supply system," Energy, Elsevier, vol. 230(C).
- Weigert, Andreas & Hopf, Konstantin & Günther, Sebastian A. & Staake, Thorsten, 2022. "Heat pump inspections result in large energy savings when a pre-selection of households is performed: A promising use case of smart meter data," Energy Policy, Elsevier, vol. 169(C).
- Wang, Chendong & Yuan, Jianjuan & Huang, Ke & Zhang, Ji & Zheng, Lihong & Zhou, Zhihua & Zhang, Yufeng, 2022. "Research on thermal load prediction of district heating station based on transfer learning," Energy, Elsevier, vol. 239(PE).
- Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
- Ren, Zhengxiong & Han, Hua & Cui, Xiaoyu & Lu, Hailong & Luo, Mingwen, 2023. "Novel data-pulling-based strategy for chiller fault diagnosis in data-scarce scenarios," Energy, Elsevier, vol. 279(C).
- Liu, Jiangyan & Zhang, Qing & Dong, Zhenxiang & Li, Xin & Li, Guannan & Xie, Yi & Li, Kuining, 2021. "Quantitative evaluation of the building energy performance based on short-term energy predictions," Energy, Elsevier, vol. 223(C).
- Wang, Pengfei & Zhang, Jiaxuan & Wan, Jiashuang & Wu, Shifa, 2022. "A fault diagnosis method for small pressurized water reactors based on long short-term memory networks," Energy, Elsevier, vol. 239(PC).
More about this item
Keywords
Building energy system (BES); Cross-system; Cross-operation-condition; Deep transfer learning (DTL); Fault diagnosis (FD); Fine-tuning (FT);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pd:s0360544222028298. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.