IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v230y2021ics0360544221008951.html
   My bibliography  Save this article

3E analysis and optimization of an innovative cogeneration system based on biomass gasification and solar photovoltaic thermal plant

Author

Listed:
  • Teymouri, Matin
  • Sadeghi, Shayan
  • Moghimi, Mahdi
  • Ghandehariun, Samane

Abstract

In this study, an innovative hybrid solar/biomass cogeneration plant is designed and optimized to generate power and heat. Solar energy is harnessed using photovoltaic/thermal (PV/T) components to produce hydrogen via the water electrolysis method. The produced fuel is then used as an additive in the combustion chamber (CC) of a gas turbine (GT) cycle. The primary fuel used in the CC is high-temperature syngas produced in the gasification process of wooden biomass. Additionally, a steam Rankine cycle (SRC) coupled with a thermoelectric generator (TEG) is utilized to achieve higher efficiency. The proposed system is investigated in detail using thermodynamic approaches of energy, exergy, and exergo-economic analyses. The energy and exergy efficiencies of the system are determined as 69.15% and 23.11%, respectively. The system produces 14.55 MW of electricity with a total cost rate of $633.04/h and a unit product cost of $4.66/GJ. Finally, two optimizations are performed with the exergy efficiency and total cost rate and also exergy efficiency and levelized cost of electricity (LCOE) as the objective functions. In the first optimization, the optimum exergy efficiency is 4.02% less than that of the base case. However, the total cost rate of the system is improved drastically from $633.04/h in the base case to $212.29/h in the optimal case. In the second one, better exergy efficiency and also LCOE is achievable in comparison with the base case.

Suggested Citation

  • Teymouri, Matin & Sadeghi, Shayan & Moghimi, Mahdi & Ghandehariun, Samane, 2021. "3E analysis and optimization of an innovative cogeneration system based on biomass gasification and solar photovoltaic thermal plant," Energy, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:energy:v:230:y:2021:i:c:s0360544221008951
    DOI: 10.1016/j.energy.2021.120646
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221008951
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120646?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anvari, Simin & Khalilarya, Sharam & Zare, V., 2018. "Exergoeconomic and environmental analysis of a novel configuration of solar-biomass hybrid power generation system," Energy, Elsevier, vol. 165(PB), pages 776-789.
    2. Valero, Antonio & Lozano, Miguel A. & Serra, Luis & Tsatsaronis, George & Pisa, Javier & Frangopoulos, Christos & von Spakovsky, Michael R., 1994. "CGAM problem: Definition and conventional solution," Energy, Elsevier, vol. 19(3), pages 279-286.
    3. Lazaroiu, Gheorghe & Pop, Elena & Negreanu, Gabriel & Pisa, Ionel & Mihaescu, Lucian & Bondrea, Andreya & Berbece, Viorel, 2017. "Biomass combustion with hydrogen injection for energy applications," Energy, Elsevier, vol. 127(C), pages 351-357.
    4. Chen, Heng & Xue, Kai & Wu, Yunyun & Xu, Gang & Jin, Xin & Liu, Wenyi, 2021. "Thermodynamic and economic analyses of a solar-aided biomass-fired combined heat and power system," Energy, Elsevier, vol. 214(C).
    5. Sadeghi, Shayan & Ghandehariun, Samane & Rosen, Marc A., 2020. "Comparative economic and life cycle assessment of solar-based hydrogen production for oil and gas industries," Energy, Elsevier, vol. 208(C).
    6. Chitgar, Nazanin & Moghimi, Mahdi, 2020. "Design and evaluation of a novel multi-generation system based on SOFC-GT for electricity, fresh water and hydrogen production," Energy, Elsevier, vol. 197(C).
    7. Behzadi, Amirmohammad & Habibollahzade, Ali & Ahmadi, Pouria & Gholamian, Ehsan & Houshfar, Ehsan, 2019. "Multi-objective design optimization of a solar based system for electricity, cooling, and hydrogen production," Energy, Elsevier, vol. 169(C), pages 696-709.
    8. Wang, Xurong & Yang, Yi & Zheng, Ya & Dai, Yiping, 2017. "Exergy and exergoeconomic analyses of a supercritical CO2 cycle for a cogeneration application," Energy, Elsevier, vol. 119(C), pages 971-982.
    9. Soltani, Saeed, 2019. "Modified exergy and exergoeconomic analyses of a biomass post fired hydrogen production combined cycle," Renewable Energy, Elsevier, vol. 135(C), pages 1466-1480.
    10. Li, Chun-Hua & Zhu, Xin-Jian & Cao, Guang-Yi & Sui, Sheng & Hu, Ming-Ruo, 2009. "Dynamic modeling and sizing optimization of stand-alone photovoltaic power systems using hybrid energy storage technology," Renewable Energy, Elsevier, vol. 34(3), pages 815-826.
    11. Sayyaadi, Hoseyn & Mehrabipour, Reza, 2012. "Efficiency enhancement of a gas turbine cycle using an optimized tubular recuperative heat exchanger," Energy, Elsevier, vol. 38(1), pages 362-375.
    12. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2014. "Thermoeconomic multi-objective optimization of a novel biomass-based integrated energy system," Energy, Elsevier, vol. 68(C), pages 958-970.
    13. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2011. "Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants," Energy, Elsevier, vol. 36(10), pages 5886-5898.
    14. Moharramian, Anahita & Soltani, Saeed & Rosen, Marc A. & Mahmoudi, S.M.S. & Bhattacharya, Tanushree, 2019. "Modified exergy and modified exergoeconomic analyses of a solar based biomass co-fired cycle with hydrogen production," Energy, Elsevier, vol. 167(C), pages 715-729.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khosrow Hemmatpour & Ramin Ghasemiasl & Mehrdad Malekzadeh dirin & Mohammad Amin Javadi, 2023. "Time-Transient Optimization of Electricity and Fresh Water Cogeneration Cycle Using Gas Fuel and Solar Energy," Mathematics, MDPI, vol. 11(3), pages 1-21, January.
    2. Behzadi, Amirmohammad & Sadrizadeh, Sasan, 2023. "Grid-tied solar and biomass hybridization for multi-family houses in Sweden: An optimal rule-based control framework through machine learning approach," Renewable Energy, Elsevier, vol. 218(C).
    3. Ali, Ramadan Hefny & Abdel Samee, Ahmed A. & Maghrabie, Hussein M., 2023. "Thermodynamic analysis of a cogeneration system in pulp and paper industry under singular and hybrid operating modes," Energy, Elsevier, vol. 263(PE).
    4. Qi, Xinrui & Yang, Chunsheng & Huang, Mingyang & Ma, Zhenjun & Hnydiuk-Stefan, Anna & Feng, Ke & Siarry, Patrick & Królczyk, Grzegorz & Li, Z., 2024. "Conventional and advanced exergy-exergoeconomic-exergoenvironmental analyses of an organic Rankine cycle integrated with solar and biomass energy sources," Energy, Elsevier, vol. 288(C).
    5. Wang, Yangyang & Liu, Yangyang & Xu, Zaifeng & Yin, Kexin & Zhou, Yaru & Zhang, Jifu & Cui, Peizhe & Ma, Shinan & Wang, Yinglong & Zhu, Zhaoyou, 2024. "A review on renewable energy-based chemical engineering design and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    6. Yang, Bo & Zeng, Chunyuan & Li, Danyang & Guo, Zhengxun & Chen, Yijun & Shu, Hongchun & Cao, Pulin & Li, Zilin, 2022. "Improved immune genetic algorithm based TEG system reconfiguration under non-uniform temperature distribution," Applied Energy, Elsevier, vol. 325(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qin, Liyuan & Wu, Yang & Jiang, Enchen, 2022. "In situ template preparation of porous carbon materials that are derived from swine manure and have ordered hierarchical nanopore structures for energy storage," Energy, Elsevier, vol. 242(C).
    2. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    3. Sahu, Mithilesh Kumar & Sanjay,, 2017. "Comparative exergoeconomics of power utilities: Air-cooled gas turbine cycle and combined cycle configurations," Energy, Elsevier, vol. 139(C), pages 42-51.
    4. Zhou, Dengji & Yan, Siyun & Huang, Dawen & Shao, Tiemin & Xiao, Wang & Hao, Jiarui & Wang, Chen & Yu, Tianqi, 2022. "Modeling and simulation of the hydrogen blended gas-electricity integrated energy system and influence analysis of hydrogen blending modes," Energy, Elsevier, vol. 239(PA).
    5. Anvari, Simin & Mahian, Omid & Taghavifar, Hadi & Wongwises, Somchai & Desideri, Umberto, 2020. "4E analysis of a modified multigeneration system designed for power, heating/cooling, and water desalination," Applied Energy, Elsevier, vol. 270(C).
    6. Wang, Zhen & Duan, Liqiang & Zhang, Zuxian, 2022. "Multi-objective optimization of gas turbine combined cycle system considering environmental damage cost of pollution emissions," Energy, Elsevier, vol. 261(PA).
    7. Bakhshmand, Sina Kazemi & Saray, Rahim Khoshbakhti & Bahlouli, Keyvan & Eftekhari, Hajar & Ebrahimi, Afshin, 2015. "Exergoeconomic analysis and optimization of a triple-pressure combined cycle plant using evolutionary algorithm," Energy, Elsevier, vol. 93(P1), pages 555-567.
    8. Naserabad, S. Nikbakht & Mehrpanahi, A. & Ahmadi, G., 2018. "Multi-objective optimization of HRSG configurations on the steam power plant repowering specifications," Energy, Elsevier, vol. 159(C), pages 277-293.
    9. Bahlouli, K. & Khoshbakhti Saray, R. & Sarabchi, N., 2015. "Parametric investigation and thermo-economic multi-objective optimization of an ammonia–water power/cooling cycle coupled with an HCCI (homogeneous charge compression ignition) engine," Energy, Elsevier, vol. 86(C), pages 672-684.
    10. Ashkan Abdalisousan & Maryam Fani & Bijan Farhanieh & Majid Abbaspour, 2014. "Effect of Decision Variables in the Steam Section for the Exergoeconomic Analysis of TCCGT Power Plant: A Case Study," Energy & Environment, , vol. 25(8), pages 1381-1404, December.
    11. Hu, Shuozhuo & Li, Jian & Yang, Fubin & Yang, Zhen & Duan, Yuanyuan, 2020. "Multi-objective optimization of organic Rankine cycle using hydrofluorolefins (HFOs) based on different target preferences," Energy, Elsevier, vol. 203(C).
    12. Agudelo, Andrés & Valero, Antonio & Torres, César, 2012. "Allocation of waste cost in thermoeconomic analysis," Energy, Elsevier, vol. 45(1), pages 634-643.
    13. Mehr, A.S. & Moharramian, A. & Hossainpour, S. & Pavlov, Denis A., 2020. "Effect of blending hydrogen to biogas fuel driven from anaerobic digestion of wastewater on the performance of a solid oxide fuel cell system," Energy, Elsevier, vol. 202(C).
    14. Saeed Esfandi & Simin Baloochzadeh & Mohammad Asayesh & Mehdi Ali Ehyaei & Abolfazl Ahmadi & Amir Arsalan Rabanian & Biplab Das & Vitor A. F. Costa & Afshin Davarpanah, 2020. "Energy, Exergy, Economic, and Exergoenvironmental Analyses of a Novel Hybrid System to Produce Electricity, Cooling, and Syngas," Energies, MDPI, vol. 13(23), pages 1-27, December.
    15. Boyaghchi, Fateme Ahmadi & Molaie, Hanieh, 2015. "Advanced exergy and environmental analyses and multi objective optimization of a real combined cycle power plant with supplementary firing using evolutionary algorithm," Energy, Elsevier, vol. 93(P2), pages 2267-2279.
    16. Ramin Ghiami Sardroud & Amirreza Javaherian & Seyed Mohammad Seyed Mahmoudi & Mehri Akbari Kordlar & Marc A. Rosen, 2023. "Proposal and Comprehensive Analysis of a Novel Combined Plant with Gas Turbine and Organic Flash Cycles: An Application of Multi-Objective Optimization," Sustainability, MDPI, vol. 15(19), pages 1-40, September.
    17. Starke, Allan R. & Cardemil, José M. & Escobar, Rodrigo & Colle, Sergio, 2018. "Multi-objective optimization of hybrid CSP+PV system using genetic algorithm," Energy, Elsevier, vol. 147(C), pages 490-503.
    18. Sahu, Mithilesh Kumar & Sanjay,, 2017. "Thermoeconomic investigation of power utilities: Intercooled recuperated gas turbine cycle featuring cooled turbine blades," Energy, Elsevier, vol. 138(C), pages 490-499.
    19. Al Asfar, Jamil & AlShwawra, Ahmad & Shaban, Nabeel Abu & Alrbai, Mohammad & Qawasmeh, Bashar R. & Sakhrieh, Ahmad & Hamdan, Mohammad A. & Odeh, Omar, 2020. "Thermodynamic analysis of a biomass-fired lab-scale power plant," Energy, Elsevier, vol. 194(C).
    20. Xiong, Jie & Zhao, Haibo & Zhang, Chao & Zheng, Chuguang & Luh, Peter B., 2012. "Thermoeconomic operation optimization of a coal-fired power plant," Energy, Elsevier, vol. 42(1), pages 486-496.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:230:y:2021:i:c:s0360544221008951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.