IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v167y2019icp715-729.html
   My bibliography  Save this article

Modified exergy and modified exergoeconomic analyses of a solar based biomass co-fired cycle with hydrogen production

Author

Listed:
  • Moharramian, Anahita
  • Soltani, Saeed
  • Rosen, Marc A.
  • Mahmoudi, S.M.S.
  • Bhattacharya, Tanushree

Abstract

A solar based biomass co-fired combined cycle with hydrogen production is proposed and assessed with conventional and modified thermodynamic and exergoeconomic analyses. The cycle uses biomass and solar energy as renewable energies along with the fossil fuel natural gas. Hydrogen is produced by the photovoltaic/thermal system and in one option is injected to the combustion chamber of combined cycle to reduce fossil fuel usage and CO2 emissions. Modified analyses are based on avoidable and unavoidable exergy destruction and component investment costs. Although hydrogen injection does not increase efficiencies, it reduces the exergy destruction by 0.24%, the total exergy destruction cost rate by 3.36%, the CO2 discharge rate by 2% and the total unit product cost by 3%. Based on conventional analysis, the gasifier, the post combustion chamber and the combustion chamber are the components with high exergy destructions, while based on modified analysis the combustion chamber, the gas turbine and the air compressor have highest exergy destructions. The components with the highest investment cost rates are shown to be the steam turbine, gas turbine and air compressor by conventional method while with the modified method they are found to be the gas turbine, the air compressor and the steam turbine.

Suggested Citation

  • Moharramian, Anahita & Soltani, Saeed & Rosen, Marc A. & Mahmoudi, S.M.S. & Bhattacharya, Tanushree, 2019. "Modified exergy and modified exergoeconomic analyses of a solar based biomass co-fired cycle with hydrogen production," Energy, Elsevier, vol. 167(C), pages 715-729.
  • Handle: RePEc:eee:energy:v:167:y:2019:i:c:p:715-729
    DOI: 10.1016/j.energy.2018.10.197
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218321947
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.10.197?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    2. Mehrpooya, Mehdi & Khalili, Maryam & Sharifzadeh, Mohammad Mehdi Moftakhari, 2018. "Model development and energy and exergy analysis of the biomass gasification process (Based on the various biomass sources)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 869-887.
    3. Wang, Jiang-Jiang & Yang, Kun & Xu, Zi-Long & Fu, Chao, 2015. "Energy and exergy analyses of an integrated CCHP system with biomass air gasification," Applied Energy, Elsevier, vol. 142(C), pages 317-327.
    4. Datta, Amitava & Ganguly, Ranjan & Sarkar, Luna, 2010. "Energy and exergy analyses of an externally fired gas turbine (EFGT) cycle integrated with biomass gasifier for distributed power generation," Energy, Elsevier, vol. 35(1), pages 341-350.
    5. Wang, Jiangjiang & Mao, Tianzhi & Sui, Jun & Jin, Hongguang, 2015. "Modeling and performance analysis of CCHP (combined cooling, heating and power) system based on co-firing of natural gas and biomass gasification gas," Energy, Elsevier, vol. 93(P1), pages 801-815.
    6. Petrakopoulou, Fontina & Tsatsaronis, George & Morosuk, Tatiana & Carassai, Anna, 2012. "Conventional and advanced exergetic analyses applied to a combined cycle power plant," Energy, Elsevier, vol. 41(1), pages 146-152.
    7. Pedroso, Daniel Travieso & Machin, Einara Blanco & Proenza Pérez, Nestor & Braga, Lúcia Bollini & Silveira, José Luz, 2017. "Technical assessment of the Biomass Integrated Gasification/Gas Turbine Combined Cycle (BIG/GTCC) incorporation in the sugarcane industry," Renewable Energy, Elsevier, vol. 114(PB), pages 464-479.
    8. Bonforte, Giuseppe & Buchgeister, Jens & Manfrida, Giampaolo & Petela, Karolina, 2018. "Exergoeconomic and exergoenvironmental analysis of an integrated solar gas turbine/combined cycle power plant," Energy, Elsevier, vol. 156(C), pages 352-359.
    9. Hashim, Haslenda & Ho, Wai Shin & Lim, Jeng Shiun & Macchietto, Sandro, 2014. "Integrated biomass and solar town: Incorporation of load shifting and energy storage," Energy, Elsevier, vol. 75(C), pages 31-39.
    10. Lian, Z.T. & Chua, K.J. & Chou, S.K., 2010. "A thermoeconomic analysis of biomass energy for trigeneration," Applied Energy, Elsevier, vol. 87(1), pages 84-95, January.
    11. del Amo, Alejandro & Martínez-Gracia, Amaya & Bayod-Rújula, Angel A. & Antoñanzas, Javier, 2017. "An innovative urban energy system constituted by a photovoltaic/thermal hybrid solar installation: Design, simulation and monitoring," Applied Energy, Elsevier, vol. 186(P2), pages 140-151.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehr, A.S. & Moharramian, A. & Hossainpour, S. & Pavlov, Denis A., 2020. "Effect of blending hydrogen to biogas fuel driven from anaerobic digestion of wastewater on the performance of a solid oxide fuel cell system," Energy, Elsevier, vol. 202(C).
    2. Fang, Yi & Paul, Manosh C. & Varjani, Sunita & Li, Xian & Park, Young-Kwon & You, Siming, 2021. "Concentrated solar thermochemical gasification of biomass: Principles, applications, and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Li, Ruiheng & Xu, Dong & Tian, Hao & Zhu, Yiping, 2023. "Multi-objective study and optimization of a solar-boosted geothermal flash cycle integrated into an innovative combined power and desalinated water production process: Application of a case study," Energy, Elsevier, vol. 282(C).
    4. Teymouri, Matin & Sadeghi, Shayan & Moghimi, Mahdi & Ghandehariun, Samane, 2021. "3E analysis and optimization of an innovative cogeneration system based on biomass gasification and solar photovoltaic thermal plant," Energy, Elsevier, vol. 230(C).
    5. Qi, Xinrui & Yang, Chunsheng & Huang, Mingyang & Ma, Zhenjun & Hnydiuk-Stefan, Anna & Feng, Ke & Siarry, Patrick & Królczyk, Grzegorz & Li, Z., 2024. "Conventional and advanced exergy-exergoeconomic-exergoenvironmental analyses of an organic Rankine cycle integrated with solar and biomass energy sources," Energy, Elsevier, vol. 288(C).
    6. Qin, Liyuan & Wu, Yang & Jiang, Enchen, 2022. "In situ template preparation of porous carbon materials that are derived from swine manure and have ordered hierarchical nanopore structures for energy storage," Energy, Elsevier, vol. 242(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wegener, Moritz & Malmquist, Anders & Isalgué, Antonio & Martin, Andrew, 2018. "Biomass-fired combined cooling, heating and power for small scale applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 392-410.
    2. Wang, Jiangjiang & Mao, Tianzhi & Wu, Jing, 2017. "Modified exergoeconomic modeling and analysis of combined cooling heating and power system integrated with biomass-steam gasification," Energy, Elsevier, vol. 139(C), pages 871-882.
    3. Su, Bosheng & Han, Wei & Zhang, Xiaosong & Chen, Yi & Wang, Zefeng & Jin, Hongguang, 2018. "Assessment of a combined cooling, heating and power system by synthetic use of biogas and solar energy," Applied Energy, Elsevier, vol. 229(C), pages 922-935.
    4. Li, C.Y. & Deethayat, T. & Wu, J.Y. & Kiatsiriroat, T. & Wang, R.Z., 2018. "Simulation and evaluation of a biomass gasification-based combined cooling, heating, and power system integrated with an organic Rankine cycle," Energy, Elsevier, vol. 158(C), pages 238-255.
    5. Fontina Petrakopoulou & Marina Olmeda-Delgado, 2019. "Studying the Reduction of Water Use in Integrated Solar Combined-Cycle Plants," Sustainability, MDPI, vol. 11(7), pages 1-27, April.
    6. Sharafi laleh, Shayan & Fatemi Alavi, Seyed Hamed & Soltani, Saeed & Mahmoudi, S.M.S. & Rosen, Marc A., 2024. "A novel supercritical carbon dioxide combined cycle fueled by biomass: Thermodynamic assessment," Renewable Energy, Elsevier, vol. 222(C).
    7. Wang, Jiangjiang & Li, Meng & Ren, Fukang & Li, Xiaojing & Liu, Boxiang, 2018. "Modified exergoeconomic analysis method based on energy level with reliability consideration: Cost allocations in a biomass trigeneration system," Renewable Energy, Elsevier, vol. 123(C), pages 104-116.
    8. Jin Wu & Jiangjiang Wang & Jing Wu & Chaofan Ma, 2019. "Exergy and Exergoeconomic Analysis of a Combined Cooling, Heating, and Power System Based on Solar Thermal Biomass Gasification," Energies, MDPI, vol. 12(12), pages 1-19, June.
    9. Fan, Junming & Hong, Hui & Zhu, Lin & Jiang, Qiongqiong & Jin, Hongguang, 2017. "Thermodynamic and environmental evaluation of biomass and coal co-fuelled gasification chemical looping combustion with CO2 capture for combined cooling, heating and power production," Applied Energy, Elsevier, vol. 195(C), pages 861-876.
    10. Han, Xiaoqu & Liu, Ming & Wu, Kaili & Chen, Weixiong & Xiao, Feng & Yan, Junjie, 2016. "Exergy analysis of the flue gas pre-dried lignite-fired power system based on the boiler with open pulverizing system," Energy, Elsevier, vol. 106(C), pages 285-300.
    11. Martínez González, Aldemar & Lesme Jaén, René & Silva Lora, Electo Eduardo, 2020. "Thermodynamic assessment of the integrated gasification-power plant operating in the sawmill industry: An energy and exergy analysis," Renewable Energy, Elsevier, vol. 147(P1), pages 1151-1163.
    12. Soltani, S. & Yari, M. & Mahmoudi, S.M.S. & Morosuk, T. & Rosen, M.A., 2013. "Advanced exergy analysis applied to an externally-fired combined-cycle power plant integrated with a biomass gasification unit," Energy, Elsevier, vol. 59(C), pages 775-780.
    13. Ren, Hongbo & Zhou, Weisheng & Nakagami, Ken'ichi & Gao, Weijun, 2010. "Integrated design and evaluation of biomass energy system taking into consideration demand side characteristics," Energy, Elsevier, vol. 35(5), pages 2210-2222.
    14. Zhang, Dong & Zhang, Rui & Zhang, Bin & Zheng, Yu & An, Zhoujian, 2023. "Environment dominated evaluation modeling and collocation optimization of a distributed energy system based on solar and biomass energy," Renewable Energy, Elsevier, vol. 202(C), pages 1226-1240.
    15. Li, C.Y. & Wu, J.Y. & Shen, Y. & Kan, X. & Dai, Y.J. & Wang, C.-H., 2018. "Evaluation of a combined cooling, heating, and power system based on biomass gasification in different climate zones in the U.S," Energy, Elsevier, vol. 144(C), pages 326-340.
    16. Anvari, Simin & Khalilarya, Sharam & Zare, V., 2018. "Exergoeconomic and environmental analysis of a novel configuration of solar-biomass hybrid power generation system," Energy, Elsevier, vol. 165(PB), pages 776-789.
    17. Li, Xian & Chen, Jialing & Sun, Xiangyu & Zhao, Yao & Chong, Clive & Dai, Yanjun & Wang, Chi-Hwa, 2021. "Multi-criteria decision making of biomass gasification-based cogeneration systems with heat storage and solid dehumidification of desiccant coated heat exchangers," Energy, Elsevier, vol. 233(C).
    18. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Advanced exergy analysis of an oil shale retorting process," Applied Energy, Elsevier, vol. 165(C), pages 405-415.
    19. Perna, Alessandra & Minutillo, Mariagiovanna & Jannelli, Elio & Cigolotti, Viviana & Nam, Suk Woo & Yoon, Kyung Joong, 2018. "Performance assessment of a hybrid SOFC/MGT cogeneration power plant fed by syngas from a biomass down-draft gasifier," Applied Energy, Elsevier, vol. 227(C), pages 80-91.
    20. Roy, Dibyendu & Samanta, Samiran & Roy, Sumit & Smallbone, Andrew & Paul Roskilly, Anthony, 2023. "Fuel cell integrated carbon negative power generation from biomass," Applied Energy, Elsevier, vol. 331(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:167:y:2019:i:c:p:715-729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.