IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6453-d457663.html
   My bibliography  Save this article

Energy, Exergy, Economic, and Exergoenvironmental Analyses of a Novel Hybrid System to Produce Electricity, Cooling, and Syngas

Author

Listed:
  • Saeed Esfandi

    (School of Urban Planning, College of Fine Arts, University of Tehran, 1417466191 Tehran, Iran)

  • Simin Baloochzadeh

    (Faculty of Technology, University of Sunderland, Sunderland SR1 3SD, UK)

  • Mohammad Asayesh

    (Department of Energy Engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, 1477893855 Tehran, Iran)

  • Mehdi Ali Ehyaei

    (Department of Mechanical Engineering, Pardis Branch, Islamic Azad University, 1468995513 Pardis New City, Iran)

  • Abolfazl Ahmadi

    (Department of Energy Systems Engineering, School of New Technologies, Iran University of Science and Technology, 1584743311 Tehran, Iran)

  • Amir Arsalan Rabanian

    (School of Environment, College of Engineering, University of Tehran, 1417466191 Tehran, Iran)

  • Biplab Das

    (Department of Mechanical Engineering, National Institute of Technology Silchar, Asaam 788010, India)

  • Vitor A. F. Costa

    (Center for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal)

  • Afshin Davarpanah

    (Department of Mathematics, Aberystwyth University, Aberystwyth SY23 3FL, UK)

Abstract

Efficient solar and wind energy to electricity conversion technologies are the best alternatives to reduce the use of fossil fuels and to evolve towards a green and decarbonized world. As the conventional photovoltaic systems use only the 600–1100 nm wavelength range of the solar radiation spectrum for electricity production, hybrid systems taking advantage of the overall solar radiation spectrum are gaining increasing interest. Moreover, such hybrid systems can produce, in an integrated and combined way, electricity, heating, cooling, and syngas through thermochemical processes. They have thus the huge potential for use in residential applications. The present work proposes a novel combined and integrated system for residential applications including wind turbines and a solar dish collector for renewables energy harvesting, an organic Rankine cycle for power production, an absorption chiller for cold production, and a methanation plant for CH 4 production from captured CO 2 . This study deals with the energy, exergy, economic, and exergoenvironmental analyses of the proposed hybrid combined system, to assess its performance, viability, and environmental impact when operating in Tehran. Additionally, it gives a clear picture of how the production pattern of each useful product depends on the patterns of the collection of available renewable energies. Results show that the rate of methane production of this hybrid system changes from 42 up to 140 Nm 3 /month, due to CO 2 consumption from 44 to 144 Nm 3 /month during a year. Moreover, the energy and exergy efficiencies of this hybrid system vary from 24.7% and 23% to 9.1% and 8%, respectively. The simple payback period of this hybrid system is 15.6 and the payback period of the system is 21.4 years.

Suggested Citation

  • Saeed Esfandi & Simin Baloochzadeh & Mohammad Asayesh & Mehdi Ali Ehyaei & Abolfazl Ahmadi & Amir Arsalan Rabanian & Biplab Das & Vitor A. F. Costa & Afshin Davarpanah, 2020. "Energy, Exergy, Economic, and Exergoenvironmental Analyses of a Novel Hybrid System to Produce Electricity, Cooling, and Syngas," Energies, MDPI, vol. 13(23), pages 1-27, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6453-:d:457663
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6453/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6453/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kajurek, Jakub & Rusowicz, Artur & Grzebielec, Andrzej & Bujalski, Wojciech & Futyma, Kamil & Rudowicz, Zbigniew, 2019. "Selection of refrigerants for a modified organic Rankine cycle," Energy, Elsevier, vol. 168(C), pages 1-8.
    2. Kamyar Darvish & Mehdi A. Ehyaei & Farideh Atabi & Marc A. Rosen, 2015. "Selection of Optimum Working Fluid for Organic Rankine Cycles by Exergy and Exergy-Economic Analyses," Sustainability, MDPI, vol. 7(11), pages 1-22, November.
    3. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    4. Lecompte, S. & Huisseune, H. & van den Broek, M. & De Schampheleire, S. & De Paepe, M., 2013. "Part load based thermo-economic optimization of the Organic Rankine Cycle (ORC) applied to a combined heat and power (CHP) system," Applied Energy, Elsevier, vol. 111(C), pages 871-881.
    5. Li, Chun-Hua & Zhu, Xin-Jian & Cao, Guang-Yi & Sui, Sheng & Hu, Ming-Ruo, 2009. "Dynamic modeling and sizing optimization of stand-alone photovoltaic power systems using hybrid energy storage technology," Renewable Energy, Elsevier, vol. 34(3), pages 815-826.
    6. Bellos, Evangelos & Tzivanidis, Christos, 2018. "Multi-objective optimization of a solar driven trigeneration system," Energy, Elsevier, vol. 149(C), pages 47-62.
    7. Behzadi, Amirmohammad & Habibollahzade, Ali & Ahmadi, Pouria & Gholamian, Ehsan & Houshfar, Ehsan, 2019. "Multi-objective design optimization of a solar based system for electricity, cooling, and hydrogen production," Energy, Elsevier, vol. 169(C), pages 696-709.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hung-Ta Wen & Jau-Huai Lu & Mai-Xuan Phuc, 2021. "Applying Artificial Intelligence to Predict the Composition of Syngas Using Rice Husks: A Comparison of Artificial Neural Networks and Gradient Boosting Regression," Energies, MDPI, vol. 14(10), pages 1-18, May.
    2. Yuan Liu & Qinliang Tan & Jian Han & Mingxin Guo, 2021. "Energy–Water–CO 2 Synergetic Optimization Based on a Mixed-Integer Linear Resource Planning Model Concerning the Demand Side Management in Beijing’s Power Structure Transformation," Energies, MDPI, vol. 14(11), pages 1-17, June.
    3. Zi-Xuan Yu & Meng-Shi Li & Yi-Peng Xu & Sheraz Aslam & Yuan-Kang Li, 2021. "Techno-Economic Planning and Operation of the Microgrid Considering Real-Time Pricing Demand Response Program," Energies, MDPI, vol. 14(15), pages 1-28, July.
    4. Mahdi Deymi-Dashtebayaz & Ekaterina Tambulatova & Marziye Norani & Mostafa Asadi & Aleksei Asach, 2024. "Emergy analysis of applying a multi-generation system for building based on renewable energies for various weather conditions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 27945-27974, November.
    5. Cheng Liu & Hang Yu, 2021. "Evaluation and Optimization of a Two-Phase Liquid-Immersion Cooling System for Data Centers," Energies, MDPI, vol. 14(5), pages 1-21, March.
    6. Jin-Hee Kim & Ji-Suk Yu & Jun-Tae Kim, 2021. "An Experimental Study on the Energy and Exergy Performance of an Air-Type PVT Collector with Perforated Baffle," Energies, MDPI, vol. 14(10), pages 1-13, May.
    7. Karol Sztekler & Wojciech Kalawa & Łukasz Mika & Agata Mlonka-Medrala & Marcin Sowa & Wojciech Nowak, 2021. "Effect of Additives on the Sorption Kinetics of a Silica Gel Bed in Adsorption Chiller," Energies, MDPI, vol. 14(4), pages 1-13, February.
    8. Azizi, Saeid & Shakibi, Hamid & Shokri, Afshar & Chitsaz, Ata & Yari, Mortaza, 2023. "Multi-aspect analysis and RSM-based optimization of a novel dual-source electricity and cooling cogeneration system," Applied Energy, Elsevier, vol. 332(C).
    9. Rahmad Syah & Safoura Faghri & Mahyuddin KM Nasution & Afshin Davarpanah & Marek Jaszczur, 2021. "Modeling and Optimization of Wind Turbines in Wind Farms for Solving Multi-Objective Reactive Power Dispatch Using a New Hybrid Scheme," Energies, MDPI, vol. 14(18), pages 1-22, September.
    10. Khashayar Hamedi & Shahrbanoo Sadeghi & Saeed Esfandi & Mahdi Azimian & Hessam Golmohamadi, 2021. "Eco-Emission Analysis of Multi-Carrier Microgrid Integrated with Compressed Air and Power-to-Gas Energy Storage Technologies," Sustainability, MDPI, vol. 13(9), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teymouri, Matin & Sadeghi, Shayan & Moghimi, Mahdi & Ghandehariun, Samane, 2021. "3E analysis and optimization of an innovative cogeneration system based on biomass gasification and solar photovoltaic thermal plant," Energy, Elsevier, vol. 230(C).
    2. Sanne Lemmens, 2016. "Cost Engineering Techniques and Their Applicability for Cost Estimation of Organic Rankine Cycle Systems," Energies, MDPI, vol. 9(7), pages 1-18, June.
    3. Boukelia, T.E. & Arslan, O. & Djimli, S. & Kabar, Y., 2023. "ORC fluids selection for a bottoming binary geothermal power plant integrated with a CSP plant," Energy, Elsevier, vol. 265(C).
    4. Gao, Datong & Kwan, Trevor Hocksun & Hu, Maobin & Pei, Gang, 2022. "The energy, exergy, and techno-economic analysis of a solar seasonal residual energy utilization system," Energy, Elsevier, vol. 248(C).
    5. Chatzopoulou, Maria Anna & Simpson, Michael & Sapin, Paul & Markides, Christos N., 2019. "Off-design optimisation of organic Rankine cycle (ORC) engines with piston expanders for medium-scale combined heat and power applications," Applied Energy, Elsevier, vol. 238(C), pages 1211-1236.
    6. Gao, Datong & Kwan, Trevor Hocksun & Dabwan, Yousef Naji & Hu, Maobin & Hao, Yong & Zhang, Tao & Pei, Gang, 2022. "Seasonal-regulatable energy systems design and optimization for solar energy year-round utilization☆," Applied Energy, Elsevier, vol. 322(C).
    7. Tri Tjahjono & Mehdi Ali Ehyaei & Abolfazl Ahmadi & Siamak Hoseinzadeh & Saim Memon, 2021. "Thermo-Economic Analysis on Integrated CO 2 , Organic Rankine Cycles, and NaClO Plant Using Liquefied Natural Gas," Energies, MDPI, vol. 14(10), pages 1-24, May.
    8. Zhao, Ying-Kun & Lei, Biao & Wu, Yu-Ting & Zhi, Rui-Ping & Wang, Wei & Guo, Hang & Ma, Chong-Fang, 2018. "Experimental study on the net efficiency of an Organic Rankine Cycle with single screw expander in different seasons," Energy, Elsevier, vol. 165(PB), pages 769-775.
    9. Tieyu Gao & Changwei Liu, 2017. "Off-Design Performances of Subcritical and Supercritical Organic Rankine Cycles in Geothermal Power Systems under an Optimal Control Strategy," Energies, MDPI, vol. 10(8), pages 1-25, August.
    10. Mortadi, M. & El Fadar, A. & Achkari Begdouri, O., 2024. "4E analysis of photovoltaic thermal collector-based tri-generation system with adsorption cooling: Annual simulation under Moroccan climate conditions," Renewable Energy, Elsevier, vol. 221(C).
    11. Luo, Xianglong & Yi, Zhitong & Zhang, Bingjian & Mo, Songping & Wang, Chao & Song, Mengjie & Chen, Ying, 2017. "Mathematical modelling and optimization of the liquid separation condenser used in organic Rankine cycle," Applied Energy, Elsevier, vol. 185(P2), pages 1309-1323.
    12. Cao, Yan & Dhahad, Hayder A. & Alsharif, Sameer & Sharma, Kamal & El.Shafy, Asem Saleh & Farhang, Babak & Mohammed, Adil Hussein, 2022. "Multi-objective optimizations and exergoeconomic analyses of a high-efficient bi-evaporator multigeneration system with freshwater unit," Renewable Energy, Elsevier, vol. 191(C), pages 699-714.
    13. Pili, Roberto & Romagnoli, Alessandro & Jiménez-Arreola, Manuel & Spliethoff, Hartmut & Wieland, Christoph, 2019. "Simulation of Organic Rankine Cycle – Quasi-steady state vs dynamic approach for optimal economic performance," Energy, Elsevier, vol. 167(C), pages 619-640.
    14. Dabwan, Yousef N. & Pei, Gang & Gao, Guangtao & Li, Jing & Feng, Junsheng, 2019. "Performance analysis of integrated linear fresnel reflector with a conventional cooling, heat, and power tri-generation plant," Renewable Energy, Elsevier, vol. 138(C), pages 639-650.
    15. Krail, Jürgen & Beckmann, Georg & Schittl, Florian & Piringer, Gerhard, 2023. "Comparative thermodynamic analysis of an improved ORC process with integrated injection of process fluid," Energy, Elsevier, vol. 266(C).
    16. Khiareddine, Abla & Ben Salah, Chokri & Rekioua, Djamila & Mimouni, Mohamed Faouzi, 2018. "Sizing methodology for hybrid photovoltaic /wind/ hydrogen/battery integrated to energy management strategy for pumping system," Energy, Elsevier, vol. 153(C), pages 743-762.
    17. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo & Vicidomini, Maria, 2015. "Energy and economic analysis of geothermal–solar trigeneration systems: A case study for a hotel building in Ischia," Applied Energy, Elsevier, vol. 138(C), pages 224-241.
    18. Moein Shamoushaki & Mehdi Aliehyaei & Farhad Taghizadeh-Hesary, 2021. "Energy, Exergy, Exergoeconomic, and Exergoenvironmental Assessment of Flash-Binary Geothermal Combined Cooling, Heating and Power Cycle," Energies, MDPI, vol. 14(15), pages 1-24, July.
    19. Xu, Xiao & Hu, Weihao & Cao, Di & Liu, Wen & Huang, Qi & Hu, Yanting & Chen, Zhe, 2021. "Enhanced design of an offgrid PV-battery-methanation hybrid energy system for power/gas supply," Renewable Energy, Elsevier, vol. 167(C), pages 440-456.
    20. Liya Ren & Jianyu Liu & Huaixin Wang, 2020. "Thermodynamic Optimization of a Waste Heat Power System under Economic Constraint," Energies, MDPI, vol. 13(13), pages 1-23, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6453-:d:457663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.