IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v270y2020ics030626192030619x.html
   My bibliography  Save this article

4E analysis of a modified multigeneration system designed for power, heating/cooling, and water desalination

Author

Listed:
  • Anvari, Simin
  • Mahian, Omid
  • Taghavifar, Hadi
  • Wongwises, Somchai
  • Desideri, Umberto

Abstract

Multigeneration systems, owing to their efficient fuel utilization, are recognized as one of the best technical and economical methods of energy saving and climate control. In this paper, a multigeneration system is proposed for the production of power, heating/cooling, and desalinated water. The proposed system was first studied by means of an energy, exergy, exergoeconomic, and environmental analyses and the obtained results were compared with that of multigeneration systems described in the literature (the selected multigeneration systems are based on a gas turbine cycle as prime mover). In addition, a parametric study was used to investigate the effects of primary thermodynamic quantities such as air pre-heater outlet temperature, pinch-point temperature difference in evaporator, evaporator temperature of cooling cycle, and evaporator temperature of desalination system on cycle performance. Results indicated that the proposed cycle’s power, heating, cooling, and desalinated water production is 30.5 MW, 40.8 MW, 1 MW, and 0.364 kg/s, respectively. In addition, the cycle’s total cost and total CO2 emissions are 1943.5 $/h and 0.163 kg/kWh. The parametric survey showed that the air pre-heater outlet temperature and the gas turbine inlet temperature are the most influential parameters in changing the system’s CO2 emissions. In this way, an increase of the pre-heater outlet temperature causes a 26% reduction in the cycle’s CO2 emissions, whereas an increase of the gas turbine inlet temperature leads to a 53% increase in CO2 emissions.

Suggested Citation

  • Anvari, Simin & Mahian, Omid & Taghavifar, Hadi & Wongwises, Somchai & Desideri, Umberto, 2020. "4E analysis of a modified multigeneration system designed for power, heating/cooling, and water desalination," Applied Energy, Elsevier, vol. 270(C).
  • Handle: RePEc:eee:appene:v:270:y:2020:i:c:s030626192030619x
    DOI: 10.1016/j.apenergy.2020.115107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192030619X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Acha, Salvador & Mariaud, Arthur & Shah, Nilay & Markides, Christos N., 2018. "Optimal design and operation of distributed low-carbon energy technologies in commercial buildings," Energy, Elsevier, vol. 142(C), pages 578-591.
    2. Gowtham Mohan & Sujata Dahal & Uday Kumar & Andrew Martin & Hamid Kayal, 2014. "Development of Natural Gas Fired Combined Cycle Plant for Tri-Generation of Power, Cooling and Clean Water Using Waste Heat Recovery: Techno-Economic Analysis," Energies, MDPI, vol. 7(10), pages 1-24, October.
    3. Mehri Akbari & Seyed M. S. Mahmoudi & Mortaza Yari & Marc A. Rosen, 2014. "Energy and Exergy Analyses of a New Combined Cycle for Producing Electricity and Desalinated Water Using Geothermal Energy," Sustainability, MDPI, vol. 6(4), pages 1-25, April.
    4. Anvari, Simin & Khalilarya, Sharam & Zare, V., 2018. "Exergoeconomic and environmental analysis of a novel configuration of solar-biomass hybrid power generation system," Energy, Elsevier, vol. 165(PB), pages 776-789.
    5. Yue, Ting & Lior, Noam, 2017. "Exergo-economic competitiveness criteria for hybrid power cycles using multiple heat sources of different temperatures," Energy, Elsevier, vol. 135(C), pages 943-961.
    6. Sevinchan, Eren & Dincer, Ibrahim & Lang, Haoxiang, 2019. "Energy and exergy analyses of a biogas driven multigenerational system," Energy, Elsevier, vol. 166(C), pages 715-723.
    7. S. Mohammad S. Mahmoudi & Sina Salehi & Mortaza Yari & Marc A. Rosen, 2017. "Exergoeconomic Performance Comparison and Optimization of Single-Stage Absorption Heat Transformers," Energies, MDPI, vol. 10(4), pages 1-28, April.
    8. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2011. "Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants," Energy, Elsevier, vol. 36(10), pages 5886-5898.
    9. Gebreslassie, Berhane H. & Medrano, Marc & Boer, Dieter, 2010. "Exergy analysis of multi-effect water–LiBr absorption systems: From half to triple effect," Renewable Energy, Elsevier, vol. 35(8), pages 1773-1782.
    10. Brückner, Sarah & Liu, Selina & Miró, Laia & Radspieler, Michael & Cabeza, Luisa F. & Lävemann, Eberhard, 2015. "Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies," Applied Energy, Elsevier, vol. 151(C), pages 157-167.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Yan & Taslimi, Melika S. & Dastjerdi, Sajad Maleki & Ahmadi, Pouria & Ashjaee, Mehdi, 2022. "Design, dynamic simulation, and optimal size selection of a hybrid solar/wind and battery-based system for off-grid energy supply," Renewable Energy, Elsevier, vol. 187(C), pages 1082-1099.
    2. Farzad Hamrang & S. M. Seyed Mahmoudi & Marc A. Rosen, 2021. "A Novel Electricity and Freshwater Production System: Performance Analysis from Reliability and Exergoeconomic Viewpoints with Multi-Objective Optimization," Sustainability, MDPI, vol. 13(11), pages 1-30, June.
    3. Wang, Aili & Wang, Shunsheng & Ebrahimi-Moghadam, Amir & Farzaneh-Gord, Mahmood & Moghadam, Ali Jabari, 2022. "Techno-economic and techno-environmental assessment and multi-objective optimization of a new CCHP system based on waste heat recovery from regenerative Brayton cycle," Energy, Elsevier, vol. 241(C).
    4. Dsilva Winfred Rufuss, D. & Arulvel, S. & Anil Kumar, V. & Davies, P.A. & Arunkumar, T. & Sathyamurthy, Ravishankar & Kabeel, A.E. & Anand Vishwanath, M. & Sai Charan Reddy, D. & Dutta, Amandeep & Agr, 2022. "Combined effects of composite thermal energy storage and magnetic field to enhance productivity in solar desalination," Renewable Energy, Elsevier, vol. 181(C), pages 219-234.
    5. Farrokhi, Meysam & Javani, Nader & Motallebzadeh, Roghayyeh & Ebrahimpour, Abdolsalam, 2022. "Dynamic simulation and optimization of a novel energy system with Hydrogen energy storage for hotel buildings," Energy, Elsevier, vol. 257(C).
    6. Ran, Peng & Ou, YiFan & Zhang, ChunYu & Chen, YuTong, 2024. "Energy, exergy, economic, and life cycle environmental analysis of a novel biogas-fueled solid oxide fuel cell hybrid power generation system assisted with solar thermal energy storage unit," Applied Energy, Elsevier, vol. 358(C).
    7. Ghorbani, Sobhan & Deymi-Dashtebayaz, Mahdi & Dadpour, Daryoush & Delpisheh, Mostafa, 2023. "Parametric study and optimization of a novel geothermal-driven combined cooling, heating, and power (CCHP) system," Energy, Elsevier, vol. 263(PF).
    8. Kazemiani-Najafabadi, Parisa & Amiri Rad, Ehsan & Simonson, Carey James, 2022. "Designing and thermodynamic optimization of a novel combined absorption cooling and power cycle based on a water-ammonia mixture," Energy, Elsevier, vol. 253(C).
    9. Zheng, Shanshan & Hai, Qing & Zhou, Xiao & Stanford, Russell J., 2024. "A novel multi-generation system for sustainable power, heating, cooling, freshwater, and methane production: Thermodynamic, economic, and environmental analysis," Energy, Elsevier, vol. 290(C).
    10. Bosu, Issa & Mahmoud, Hatem & Hassan, Hamdy, 2023. "Energy audit and management of an industrial site based on energy efficiency, economic, and environmental analysis," Applied Energy, Elsevier, vol. 333(C).
    11. Chen, Xi & Zhao, Tian & Chen, Qun, 2022. "An online parameter identification and real-time optimization platform for thermal systems and its application," Applied Energy, Elsevier, vol. 307(C).
    12. Mahdavi, Navid & Mojaver, Parisa & Khalilarya, Shahram, 2022. "Multi-objective optimization of power, CO2 emission and exergy efficiency of a novel solar-assisted CCHP system using RSM and TOPSIS coupled method," Renewable Energy, Elsevier, vol. 185(C), pages 506-524.
    13. Tianliang, Wang & Hong, Tan, 2023. "Thermodynamic and exergoeconomic analysis of an innovative cogeneration of power and freshwater based on gas turbine cycle," Energy, Elsevier, vol. 285(C).
    14. Pietrasanta, Ariana M. & Mussati, Sergio F. & Aguirre, Pio A. & Morosuk, Tatiana & Mussati, Miguel C., 2022. "Optimization of a multi-generation power, desalination, refrigeration and heating system," Energy, Elsevier, vol. 238(PB).
    15. Nemati Mofarrah, Ali & Jalalvand, Meysam & Abdolmaleki, Abbas, 2023. "Design, multi-aspect analyses, and multi-objective optimization of a biomass/geothermal-based cogeneration of power and freshwater," Energy, Elsevier, vol. 282(C).
    16. Mahmoudi, S.M. Seyed & Akbari, A.D. & Rosen, Marc A., 2022. "A novel combination of absorption heat transformer and refrigeration for cogenerating cooling and distilled water: Thermoeconomic optimization," Renewable Energy, Elsevier, vol. 194(C), pages 978-996.
    17. Ramin Ghasemiasl & Hossein Dehghanizadeh & Mohammad Amin Javadi & Mohammad Abdolmaleki, 2023. "4E Transient Analysis of a Solar-Hybrid Gas-Turbine Cycle Equipped with Heliostat and MED," Sustainability, MDPI, vol. 15(11), pages 1-26, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teymouri, Matin & Sadeghi, Shayan & Moghimi, Mahdi & Ghandehariun, Samane, 2021. "3E analysis and optimization of an innovative cogeneration system based on biomass gasification and solar photovoltaic thermal plant," Energy, Elsevier, vol. 230(C).
    2. Lake, Andrew & Rezaie, Behanz & Beyerlein, Steven, 2017. "Review of district heating and cooling systems for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 417-425.
    3. Behnam Roshanzadeh & Ashkan Asadi & Gowtham Mohan, 2023. "Technical and Economic Feasibility Analysis of Solar Inlet Air Cooling Systems for Combined Cycle Power Plants," Energies, MDPI, vol. 16(14), pages 1-23, July.
    4. Shokati, Naser & Ranjbar, Faramarz & Yari, Mortaza, 2015. "Exergoeconomic analysis and optimization of basic, dual-pressure and dual-fluid ORCs and Kalina geothermal power plants: A comparative study," Renewable Energy, Elsevier, vol. 83(C), pages 527-542.
    5. Al-Rashed, Abdullah A.A.A. & Afrand, Masoud, 2021. "Multi-criteria exergoeconomic optimization for a combined gas turbine-supercritical CO2 plant with compressor intake cooling fueled by biogas from anaerobic digestion," Energy, Elsevier, vol. 223(C).
    6. Anvari, Simin & Szlęk, Andrzej & Arteconi, Alessia & Desideri, Umberto & Rosen, Marc A., 2023. "Comparative study of steam injection modes for a proposed biomass-driven cogeneration cycle: Performance improvement and CO2 emission reduction," Applied Energy, Elsevier, vol. 329(C).
    7. Adriano da S. Marques & Monica Carvalho & Álvaro A. V. Ochoa & Ronelly J. Souza & Carlos A. C. dos Santos, 2020. "Exergoeconomic Assessment of a Compact Electricity-Cooling Cogeneration Unit," Energies, MDPI, vol. 13(20), pages 1-18, October.
    8. Cao, Yan & Dhahad, Hayder A. & Hussen, Hasanen M. & Anqi, Ali E. & Farouk, Naeim & Issakhov, Alibek, 2022. "Development and tri-objective optimization of a novel biomass to power and hydrogen plant: A comparison of fueling with biomass gasification or biomass digestion," Energy, Elsevier, vol. 238(PC).
    9. Sahu, Mithilesh Kumar & Sanjay,, 2017. "Comparative exergoeconomics of power utilities: Air-cooled gas turbine cycle and combined cycle configurations," Energy, Elsevier, vol. 139(C), pages 42-51.
    10. Babras Khan & Man-Hoe Kim, 2022. "Energy and Exergy Analyses of a Novel Combined Heat and Power System Operated by a Recuperative Organic Rankine Cycle Integrated with a Water Heating System," Energies, MDPI, vol. 15(18), pages 1-19, September.
    11. Romo-De-La-Cruz, Cesar-Octavio & Chen, Yun & Liang, Liang & Paredes-Navia, Sergio A. & Wong-Ng, Winnie K. & Song, Xueyan, 2023. "Entering new era of thermoelectric oxide ceramics with high power factor through designing grain boundaries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    12. Angrisani, Giovanni & Roselli, Carlo & Sasso, Maurizio, 2015. "Experimental assessment of the energy performance of a hybrid desiccant cooling system and comparison with other air-conditioning technologies," Applied Energy, Elsevier, vol. 138(C), pages 533-545.
    13. Pili, Roberto & Romagnoli, Alessandro & Jiménez-Arreola, Manuel & Spliethoff, Hartmut & Wieland, Christoph, 2019. "Simulation of Organic Rankine Cycle – Quasi-steady state vs dynamic approach for optimal economic performance," Energy, Elsevier, vol. 167(C), pages 619-640.
    14. Zhao, Qin & Zhang, Houcheng & Hu, Ziyang & Hou, Shujin, 2021. "Performance evaluation of a new hybrid system consisting of a photovoltaic module and an absorption heat transformer for electricity production and heat upgrading," Energy, Elsevier, vol. 216(C).
    15. Yılmaz, İbrahim Halil & Saka, Kenan & Kaynakli, Omer, 2016. "A thermodynamic evaluation on high pressure condenser of double effect absorption refrigeration system," Energy, Elsevier, vol. 113(C), pages 1031-1041.
    16. Miguel Castro Oliveira & Muriel Iten & Pedro L. Cruz & Helena Monteiro, 2020. "Review on Energy Efficiency Progresses, Technologies and Strategies in the Ceramic Sector Focusing on Waste Heat Recovery," Energies, MDPI, vol. 13(22), pages 1-24, November.
    17. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    18. Bakhshmand, Sina Kazemi & Saray, Rahim Khoshbakhti & Bahlouli, Keyvan & Eftekhari, Hajar & Ebrahimi, Afshin, 2015. "Exergoeconomic analysis and optimization of a triple-pressure combined cycle plant using evolutionary algorithm," Energy, Elsevier, vol. 93(P1), pages 555-567.
    19. Primabudi, Eko & Morosuk, Tatiana & Tsatsaronis, George, 2019. "Multi-objective optimization of propane pre-cooled mixed refrigerant (C3MR) LNG process," Energy, Elsevier, vol. 185(C), pages 492-504.
    20. Mahmoudi, S.M.S. & Akbari Kordlar, M., 2018. "A new flexible geothermal based cogeneration system producing power and refrigeration," Renewable Energy, Elsevier, vol. 123(C), pages 499-512.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:270:y:2020:i:c:s030626192030619x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.