IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v218y2023ics096014812301145x.html
   My bibliography  Save this article

Grid-tied solar and biomass hybridization for multi-family houses in Sweden: An optimal rule-based control framework through machine learning approach

Author

Listed:
  • Behzadi, Amirmohammad
  • Sadrizadeh, Sasan

Abstract

This article proposes a cutting-edge smart building design that contributes to sustainable development objectives by fostering clean energy, facilitating sustainable cities and communities, and promoting responsible consumption and production. The main goal is to create a clever rule-based framework that will boost the penetration of renewable energy in local grids, reduce the size of the components and, consequently, investment costs, and promote the shift towards a more environmentally friendly future. The system is driven by photovoltaic thermal panels, a novel biomass heater scheme, and a scaled-down heat pump to supply the entire energy demands of multi-family houses. The grey wolf optimizer and a cascade forward neural network model achieve the most optimal condition. According to the results, the suggested smart model outperforms the conventional Swedish system, with an energy cost of 121.2 €/MWh and a low emission index of 11.2 kg/MWh. The results show that knowing how biomass price changes affect the heat pump's operational mode is crucial to ensuring the system's economic viability. In comparison to the design condition, the optimized model increased efficiency by 3.8% while decreasing overall cost (2.1 €/h), emission index (4.4 kg/MWh), and energy costs (29.9 $/MWh). The results further demonstrate that the heat pump meets the vast majority of the year's heating needs, but as electricity prices rise in December, the biomass heater becomes the principal energy provider. May is the month with the lowest average monthly cost, while December and July stand out as the most expensive months of the year due to a dramatic increase in demand. Eventually, the results show that the system runs without external energy sources through the designed optimal control framework and generates excess electricity for around half the year.

Suggested Citation

  • Behzadi, Amirmohammad & Sadrizadeh, Sasan, 2023. "Grid-tied solar and biomass hybridization for multi-family houses in Sweden: An optimal rule-based control framework through machine learning approach," Renewable Energy, Elsevier, vol. 218(C).
  • Handle: RePEc:eee:renene:v:218:y:2023:i:c:s096014812301145x
    DOI: 10.1016/j.renene.2023.119230
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812301145X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119230?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rashid, Muhammad Usman & Abid, Irfan & Latif, Abid, 2022. "Optimization of hydropower and related benefits through Cascade Reservoirs for sustainable economic growth," Renewable Energy, Elsevier, vol. 185(C), pages 241-254.
    2. Ang, Yu Qian & Polly, Allison & Kulkarni, Aparna & Chambi, Gloria Bahl & Hernandez, Matthew & Haji, Maha N., 2022. "Multi-objective optimization of hybrid renewable energy systems with urban building energy modeling for a prototypical coastal community," Renewable Energy, Elsevier, vol. 201(P1), pages 72-84.
    3. Teymouri, Matin & Sadeghi, Shayan & Moghimi, Mahdi & Ghandehariun, Samane, 2021. "3E analysis and optimization of an innovative cogeneration system based on biomass gasification and solar photovoltaic thermal plant," Energy, Elsevier, vol. 230(C).
    4. Arabkoohsar, A., 2019. "Non-uniform temperature district heating system with decentralized heat pumps and standalone storage tanks," Energy, Elsevier, vol. 170(C), pages 931-941.
    5. Qi, Haozhi & Huang, Xucheng & Sheeraz, Muhammad, 2023. "Green financing for renewable energy development: Driving the attainment of zero-emission targets," Renewable Energy, Elsevier, vol. 213(C), pages 30-37.
    6. Velarde, Pablo & Gallego, Antonio J. & Bordons, Carlos & Camacho, Eduardo F., 2023. "Scenario-based model predictive control for energy scheduling in a parabolic trough concentrating solar plant with thermal storage," Renewable Energy, Elsevier, vol. 206(C), pages 1228-1238.
    7. Chu, Shunzhou & Sethuvenkatraman, Subbu & Goldsworthy, Mark & Yuan, Guofeng, 2022. "Techno-economic assessment of solar assisted precinct level heating systems with seasonal heat storage for Australian cities," Renewable Energy, Elsevier, vol. 201(P1), pages 841-853.
    8. Seo, Su Been & Go, Eun Sol & Ling, Jester Lih Jie & Lee, See Hoon, 2022. "Techno-economic assessment of a solar-assisted biomass gasification process," Renewable Energy, Elsevier, vol. 193(C), pages 23-31.
    9. Nourozi, Behrouz & Ploskić, Adnan & Chen, Yuxiang & Ning-Wei Chiu, Justin & Wang, Qian, 2020. "Heat transfer model for energy-active windows – An evaluation of efficient reuse of waste heat in buildings," Renewable Energy, Elsevier, vol. 162(C), pages 2318-2329.
    10. Zhang, Kai & Yu, Jihua & Ren, Yan, 2022. "Research on the size optimization of photovoltaic panels and integrated application with Chinese solar greenhouses," Renewable Energy, Elsevier, vol. 182(C), pages 536-551.
    11. Liu, Zhengguang & Wang, Wene & Chen, Yuntian & Wang, Lili & Guo, Zhiling & Yang, Xiaohu & Yan, Jinyue, 2023. "Solar harvest: Enhancing carbon sequestration and energy efficiency in solar greenhouses with PVT and GSHP systems," Renewable Energy, Elsevier, vol. 211(C), pages 112-125.
    12. Al Afif, Rafat & Ayed, Yasmine & Maaitah, Omer Nawaf, 2023. "Feasibility and optimal sizing analysis of hybrid renewable energy systems: A case study of Al-Karak, Jordan," Renewable Energy, Elsevier, vol. 204(C), pages 229-249.
    13. Lemence, Allen Lemuel G. & Tamayao, Mili-Ann M., 2021. "Energy consumption profile estimation and benefits of hybrid solar energy system adoption for rural health units in the Philippines," Renewable Energy, Elsevier, vol. 178(C), pages 651-668.
    14. Li, Jianhui & Zhang, Wei & Xie, Lingzhi & Li, Zihao & Wu, Xin & Zhao, Oufan & Zhong, Jianmei & Zeng, Xiding, 2022. "A hybrid photovoltaic and water/air based thermal(PVT) solar energy collector with integrated PCM for building application," Renewable Energy, Elsevier, vol. 199(C), pages 662-671.
    15. Lu, Qingchang & Farooq, Muhammad Umar & Ma, Xiaoyu & Iram, Robina, 2022. "Assessing the combining role of public-private investment as a green finance and renewable energy in carbon neutrality target," Renewable Energy, Elsevier, vol. 196(C), pages 1357-1365.
    16. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    17. Gul, Eid & Baldinelli, Giorgio & Bartocci, Pietro & Shamim, Tariq & Domenighini, Piergiovanni & Cotana, Franco & Wang, Jinwen & Fantozzi, Francesco & Bianchi, Francesco, 2023. "Transition toward net zero emissions - Integration and optimization of renewable energy sources: Solar, hydro, and biomass with the local grid station in central Italy," Renewable Energy, Elsevier, vol. 207(C), pages 672-686.
    18. Kaur, Amanpreet & Nonnenmacher, Lukas & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2016. "Benefits of solar forecasting for energy imbalance markets," Renewable Energy, Elsevier, vol. 86(C), pages 819-830.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yadegari, Mahsa & Sahebi, Hadi & Razm, Sobhan & Ashayeri, Jalal, 2023. "A sustainable multi-objective optimization model for the design of hybrid power supply networks under uncertainty," Renewable Energy, Elsevier, vol. 219(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shirazi, Peimaneh & Behzadi, Amirmohammad & Ahmadi, Pouria & Rosen, Marc A. & Sadrizadeh, Sasan, 2024. "Comparison of control strategies for efficient thermal energy storage to decarbonize residential buildings in cold climates: A focus on solar and biomass sources," Renewable Energy, Elsevier, vol. 220(C).
    2. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad, 2020. "Optimal operating strategy of high-temperature heat and power storage system coupled with a wind farm in energy market," Energy, Elsevier, vol. 210(C).
    3. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Alvin Henao & Luceny Guzman, 2024. "Exploration of Alternatives to Reduce the Gap in Access to Electricity in Rural Communities—Las Nubes Village Case (Barranquilla, Colombia)," Energies, MDPI, vol. 17(1), pages 1-19, January.
    5. Anatoliy M. Pavlenko & Karolina Sadko, 2023. "Evaluation of Numerical Methods for Predicting the Energy Performance of Windows," Energies, MDPI, vol. 16(3), pages 1-23, February.
    6. Duan, Xiaojian & Shen, Chao & Liu, Dingming & Wu, Yupeng, 2023. "The performance analysis of a photo/thermal catalytic Trombe wall with energy generation," Renewable Energy, Elsevier, vol. 218(C).
    7. Naeem, Muhammad Abubakr & Arfaoui, Nadia, 2023. "Exploring downside risk dependence across energy markets: Electricity, conventional energy, carbon, and clean energy during episodes of market crises," Energy Economics, Elsevier, vol. 127(PB).
    8. Elsinga, Boudewijn & van Sark, Wilfried G.J.H.M., 2017. "Short-term peer-to-peer solar forecasting in a network of photovoltaic systems," Applied Energy, Elsevier, vol. 206(C), pages 1464-1483.
    9. Xiaoxia Li & Husheng Qiu & Zhifeng Wang & Jinping Li & Guobin Yuan & Xiao Guo & Lifeng Jin, 2023. "Numerical Investigation of a Solar-Heating System with Solar-Tower Receiver and Seasonal Storage in Northern China: Dynamic Performance Assessment and Operation Strategy Analysis," Energies, MDPI, vol. 16(14), pages 1-27, July.
    10. Mika Fabricius & Daniel Øland Tarp & Thomas Wehl Rasmussen & Ahmad Arabkoohsar, 2020. "Utilization of Excess Production of Waste-Fired CHP Plants for District Cooling Supply, an Effective Solution for a Serious Challenge," Energies, MDPI, vol. 13(13), pages 1-21, June.
    11. Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    12. Paletta, Quentin & Arbod, Guillaume & Lasenby, Joan, 2023. "Omnivision forecasting: Combining satellite and sky images for improved deterministic and probabilistic intra-hour solar energy predictions," Applied Energy, Elsevier, vol. 336(C).
    13. Jayesh Thaker & Robert Höller, 2023. "Evaluation of High Resolution WRF Solar," Energies, MDPI, vol. 16(8), pages 1-13, April.
    14. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    15. Coninx, Matthijs & Nies, Jarne De & Hermans, Louis & Peere, Wouter & Boydens, Wim & Helsen, Lieve, 2024. "Cost-efficient cooling of buildings by means of geothermal borefields with active and passive cooling," Applied Energy, Elsevier, vol. 355(C).
    16. Alessandro Niccolai & Seyedamir Orooji & Andrea Matteri & Emanuele Ogliari & Sonia Leva, 2022. "Irradiance Nowcasting by Means of Deep-Learning Analysis of Infrared Images," Forecasting, MDPI, vol. 4(1), pages 1-11, March.
    17. Nami, Hossein & Anvari-Moghaddam, Amjad, 2020. "Small-scale CCHP systems for waste heat recovery from cement plants: Thermodynamic, sustainability and economic implications," Energy, Elsevier, vol. 192(C).
    18. Hai, Tao & Zhang, Guangnan & Kumar Singh, Pradeep & Altameem, Torki & El-Shafai, Walid, 2023. "Unleashing wastewater heat Recovery's potential in smart building systems: Grey wolf-assisted optimization aided by artificial neural networks," Energy, Elsevier, vol. 285(C).
    19. Assareh, Ehsanolah & Mousavi Asl, Seyed Sajad & Agarwal, Neha & Ahmadinejad, Mehrdad & Ghodrat, Maryam & Lee, Moonyong, 2023. "New optimized configuration for a hybrid PVT solar/electrolyzer/absorption chiller system utilizing the response surface method as a machine learning technique and multi-objective optimization," Energy, Elsevier, vol. 281(C).
    20. Lund, Henrik & Østergaard, Poul Alberg & Nielsen, Tore Bach & Werner, Sven & Thorsen, Jan Eric & Gudmundsson, Oddgeir & Arabkoohsar, Ahmad & Mathiesen, Brian Vad, 2021. "Perspectives on fourth and fifth generation district heating," Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:218:y:2023:i:c:s096014812301145x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.