IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipas0360544221018776.html
   My bibliography  Save this article

Modeling and simulation of the hydrogen blended gas-electricity integrated energy system and influence analysis of hydrogen blending modes

Author

Listed:
  • Zhou, Dengji
  • Yan, Siyun
  • Huang, Dawen
  • Shao, Tiemin
  • Xiao, Wang
  • Hao, Jiarui
  • Wang, Chen
  • Yu, Tianqi

Abstract

Blending hydrogen into the natural gas network has a pivotal role in absorbing large-scale renewable energy sources and alleviating the supply-demand contradiction between the electricity and natural gas. This work focuses on the modeling and simulation of hydrogen blended gas-electricity integrated energy system and the influence analysis of hydrogen blending modes. The coupling characteristics between the power grid and natural gas network are fully considered in the modeling process. The simulation analyses are performed based on the real-scale natural gas network, renewable energy generation capacity and real user loads to compare the influence of hydrogen blending modes on the natural gas network pressure, flow rate and network loss. Results show that hydrogen blending in the upper line of natural gas network is superior to that in the lower line, and the concentrated hydrogen blending strategy is better than the dispersed one. Hydrogen blending behavior will certainly increase the loss of the natural gas network. The closer the hydrogen blending location is to the natural gas pipeline outlet, the smaller the natural gas network loss is, which can reduce the loss by about 36.5 %. The work provides a profitable reference for the hydrogen blended gas-electricity integrated energy system to absorb the surplus renewable energy sources.

Suggested Citation

  • Zhou, Dengji & Yan, Siyun & Huang, Dawen & Shao, Tiemin & Xiao, Wang & Hao, Jiarui & Wang, Chen & Yu, Tianqi, 2022. "Modeling and simulation of the hydrogen blended gas-electricity integrated energy system and influence analysis of hydrogen blending modes," Energy, Elsevier, vol. 239(PA).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pa:s0360544221018776
    DOI: 10.1016/j.energy.2021.121629
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221018776
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121629?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Gui-Xiong & Yan, Hua-guang & Chen, Lei & Tao, Wen-Quan, 2020. "Economic dispatch analysis of regional Electricity–Gas system integrated with distributed gas injection," Energy, Elsevier, vol. 201(C).
    2. Lund, Henrik & Munster, Ebbe, 2006. "Integrated energy systems and local energy markets," Energy Policy, Elsevier, vol. 34(10), pages 1152-1160, July.
    3. Tabar, Vahid Sohrabi & Abbasi, Vahid, 2019. "Energy management in microgrid with considering high penetration of renewable resources and surplus power generation problem," Energy, Elsevier, vol. 189(C).
    4. Kouchachvili, Lia & Entchev, Evgueniy, 2018. "Power to gas and H2/NG blend in SMART energy networks concept," Renewable Energy, Elsevier, vol. 125(C), pages 456-464.
    5. Wang, Chong & Ju, Ping & Wu, Feng & Lei, Shunbo & Hou, Yunhe, 2021. "Coordinated scheduling of integrated power and gas grids in consideration of gas flow dynamics," Energy, Elsevier, vol. 220(C).
    6. Sadeghi, Shayan & Ghandehariun, Samane & Rosen, Marc A., 2020. "Comparative economic and life cycle assessment of solar-based hydrogen production for oil and gas industries," Energy, Elsevier, vol. 208(C).
    7. Ellabban, Omar & Abu-Rub, Haitham & Blaabjerg, Frede, 2014. "Renewable energy resources: Current status, future prospects and their enabling technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 748-764.
    8. Wu, Gang & Xiang, Yue & Liu, Junyong & Gou, Jing & Shen, Xiaodong & Huang, Yuan & Jawad, Shafqat, 2020. "Decentralized day-ahead scheduling of multi-area integrated electricity and natural gas systems considering reserve optimization," Energy, Elsevier, vol. 198(C).
    9. Zhang, Yachao & Le, Jian & Zheng, Feng & Zhang, Yi & Liu, Kaipei, 2019. "Two-stage distributionally robust coordinated scheduling for gas-electricity integrated energy system considering wind power uncertainty and reserve capacity configuration," Renewable Energy, Elsevier, vol. 135(C), pages 122-135.
    10. Qin, Chao & Yan, Qingyou & He, Gang, 2019. "Integrated energy systems planning with electricity, heat and gas using particle swarm optimization," Energy, Elsevier, vol. 188(C).
    11. di Gaeta, Alessandro & Reale, Fabrizio & Chiariello, Fabio & Massoli, Patrizio, 2017. "A dynamic model of a 100 kW micro gas turbine fuelled with natural gas and hydrogen blends and its application in a hybrid energy grid," Energy, Elsevier, vol. 129(C), pages 299-320.
    12. Rohde, Daniel & Knudsen, Brage Rugstad & Andresen, Trond & Nord, Natasa, 2020. "Dynamic optimization of control setpoints for an integrated heating and cooling system with thermal energy storages," Energy, Elsevier, vol. 193(C).
    13. Wang, Jiangjiang & Chen, Yuzhu & Lior, Noam & Li, Weihua, 2019. "Energy, exergy and environmental analysis of a hybrid combined cooling heating and power system integrated with compound parabolic concentrated-photovoltaic thermal solar collectors," Energy, Elsevier, vol. 185(C), pages 463-476.
    14. Hengrui Ma & Bo Wang & Wenzhong Gao & Dichen Liu & Yong Sun & Zhijun Liu, 2018. "Optimal Scheduling of an Regional Integrated Energy System with Energy Storage Systems for Service Regulation," Energies, MDPI, vol. 11(1), pages 1-19, January.
    15. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2014. "Thermoeconomic multi-objective optimization of a novel biomass-based integrated energy system," Energy, Elsevier, vol. 68(C), pages 958-970.
    16. Momirlan, M. & Veziroglu, T. N., 2002. "Current status of hydrogen energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(1-2), pages 141-179.
    17. Christopher L. Muhich & Brian D. Ehrhart & Ibraheam Al-Shankiti & Barbara J. Ward & Charles B. Musgrave & Alan W. Weimer, 2016. "A review and perspective of efficient hydrogen generation via solar thermal water splitting," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(3), pages 261-287, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koo, Bonchan & Ha, Youngcheol & Kwon, Hweeung, 2023. "Preliminary evaluation of hydrogen blending into high-pressure natural gas pipelines through hydraulic analysis," Energy, Elsevier, vol. 268(C).
    2. Athanasios Ioannis Arvanitidis & Vivek Agarwal & Miltiadis Alamaniotis, 2023. "Nuclear-Driven Integrated Energy Systems: A State-of-the-Art Review," Energies, MDPI, vol. 16(11), pages 1-23, May.
    3. Wang, Yuwei & Shi, Lin & Song, Minghao & Jia, Mengyao & Li, Bingkang, 2024. "Evaluating the energy-exergy-economy-environment performance of the biomass-photovoltaic-hydrogen integrated energy system based on hybrid multi-criterion decision-making model," Renewable Energy, Elsevier, vol. 224(C).
    4. AlZahrani, Abdullah A. & Dincer, Ibrahim, 2022. "Assessment of a thin-electrolyte solid oxide cell for hydrogen production," Energy, Elsevier, vol. 243(C).
    5. Ye, Jianan & Xie, Min & Zhang, Shiping & Huang, Ying & Liu, Mingbo & Wang, Qiong, 2023. "Stochastic optimal scheduling of electricity–hydrogen enriched compressed natural gas urban integrated energy system," Renewable Energy, Elsevier, vol. 211(C), pages 1024-1044.
    6. Li, Fei & Wang, Dong & Guo, Hengdao & Zhang, Jianhua, 2024. "Distributionally Robust Optimization for integrated energy system accounting for refinement utilization of hydrogen and ladder-type carbon trading mechanism," Applied Energy, Elsevier, vol. 367(C).
    7. Shang, Jingyi & Gao, Jinfeng & Jiang, Xin & Liu, Mingguang & Liu, Dunnan, 2023. "Optimal configuration of hybrid energy systems considering power to hydrogen and electricity-price prediction: A two-stage multi-objective bi-level framework," Energy, Elsevier, vol. 263(PF).
    8. Wang, L.L. & Xian, R.C. & Jiao, P.H. & Chen, J.J. & Chen, Y. & Liu, H.G., 2024. "Multi-timescale optimization of integrated energy system with diversified utilization of hydrogen energy under the coupling of green certificate and carbon trading," Renewable Energy, Elsevier, vol. 228(C).
    9. Guan, Aobo & Zhou, Suyang & Gu, Wei & Liu, Zhong & Liu, Hengmen, 2022. "A novel dynamic simulation approach for Gas-Heat-Electric coupled system," Applied Energy, Elsevier, vol. 315(C).
    10. Wang, Sheng & Hui, Hongxun & Ding, Yi & Song, Yonghua, 2024. "Long-term reliability evaluation of integrated electricity and gas systems considering distributed hydrogen injections," Applied Energy, Elsevier, vol. 356(C).
    11. Qi, Shikun & Zhao, Wei & Qiu, Rui & Liu, Chunying & Li, Zhuochao & Lan, Hao & Liang, Yongtu, 2023. "Capacity allocation method of hydrogen-blending natural gas pipeline network based on bilevel optimization," Energy, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teymouri, Matin & Sadeghi, Shayan & Moghimi, Mahdi & Ghandehariun, Samane, 2021. "3E analysis and optimization of an innovative cogeneration system based on biomass gasification and solar photovoltaic thermal plant," Energy, Elsevier, vol. 230(C).
    2. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    3. Rovense, F. & Reyes-Belmonte, M.A. & González-Aguilar, J. & Amelio, M. & Bova, S. & Romero, M., 2019. "Flexible electricity dispatch for CSP plant using un-fired closed air Brayton cycle with particles based thermal energy storage system," Energy, Elsevier, vol. 173(C), pages 971-984.
    4. Suyang Zhou & Di He & Zhiyang Zhang & Zhi Wu & Wei Gu & Junjie Li & Zhe Li & Gaoxiang Wu, 2019. "A Data-Driven Scheduling Approach for Hydrogen Penetrated Energy System Using LSTM Network," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    5. Hasan, Md. Mahedi & Islam, Tamanna & Ratan, Zubair Ahmed & Shaikh, M. Nasiruzzaman & Karim, Mohammad Rezaul & Rahman, Mohammad Mominur & Alharbi, Hamad F. & Uddin, Jamal & Aziz, Md. Abdul & Ahammad, A, 2021. "Ni and Co oxide water oxidation electrocatalysts: Effect of thermal treatment on catalytic activity and surface morphology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    6. Schenk, Niels J. & Moll, Henri C. & Potting, José & Benders, René M.J., 2007. "Wind energy, electricity, and hydrogen in the Netherlands," Energy, Elsevier, vol. 32(10), pages 1960-1971.
    7. Wang, Chong & Ju, Ping & Wu, Feng & Lei, Shunbo & Hou, Yunhe, 2021. "Coordinated scheduling of integrated power and gas grids in consideration of gas flow dynamics," Energy, Elsevier, vol. 220(C).
    8. Yongjie Zhong & Hongwei Zhou & Xuanjun Zong & Zhou Xu & Yonghui Sun, 2019. "Hierarchical Multi-Objective Fuzzy Collaborative Optimization of Integrated Energy System under Off-Design Performance," Energies, MDPI, vol. 12(5), pages 1-27, March.
    9. Sayed, Ahmed Rabee & Wang, Cheng & Chen, Sheng & Shang, Ce & Bi, Tianshu, 2021. "Distributionally robust day-ahead operation of power systems with two-stage gas contracting," Energy, Elsevier, vol. 231(C).
    10. Sales-Setién, Ester & Peñarrocha-Alós, Ignacio, 2020. "Robust estimation and diagnosis of wind turbine pitch misalignments at a wind farm level," Renewable Energy, Elsevier, vol. 146(C), pages 1746-1765.
    11. Zhao, Baining & Qian, Tong & Li, Weiwei & Xin, Yanli & Zhao, Wei & Lin, Zekang & Tang, Wenhu & Jin, Xin & Cao, Wangzhang & Pan, Tingzhe, 2024. "Fast distributed co-optimization of electricity and natural gas systems hedging against wind fluctuation and uncertainty," Energy, Elsevier, vol. 298(C).
    12. Li, Haoran & Hou, Juan & Hong, Tianzhen & Nord, Natasa, 2022. "Distinguish between the economic optimal and lowest distribution temperatures for heat-prosumer-based district heating systems with short-term thermal energy storage," Energy, Elsevier, vol. 248(C).
    13. Yang, Dechang & Wang, Ming & Yang, Ruiqi & Zheng, Yingying & Pandzic, Hrvoje, 2021. "Optimal dispatching of an energy system with integrated compressed air energy storage and demand response," Energy, Elsevier, vol. 234(C).
    14. Wen Fan & Qing Liu & Mingyu Wang, 2021. "Bi-Level Multi-Objective Optimization Scheduling for Regional Integrated Energy Systems Based on Quantum Evolutionary Algorithm," Energies, MDPI, vol. 14(16), pages 1-15, August.
    15. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    16. Xinxin Liu & Nan Li & Feng Liu & Hailin Mu & Longxi Li & Xiaoyu Liu, 2021. "Optimal Design on Fossil-to-Renewable Energy Transition of Regional Integrated Energy Systems under CO 2 Emission Abatement Control: A Case Study in Dalian, China," Energies, MDPI, vol. 14(10), pages 1-25, May.
    17. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    18. Eid, Cherrelle & Codani, Paul & Perez, Yannick & Reneses, Javier & Hakvoort, Rudi, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 237-247.
    19. Francisco José Sepúlveda & María Teresa Miranda & Irene Montero & José Ignacio Arranz & Francisco Javier Lozano & Manuel Matamoros & Paloma Rodríguez, 2019. "Analysis of Potential Use of Linear Fresnel Collector for Direct Steam Generation in Industries of the Southwest of Europe," Energies, MDPI, vol. 12(21), pages 1-15, October.
    20. Kothari, Richa & Singh, D.P. & Tyagi, V.V. & Tyagi, S.K., 2012. "Fermentative hydrogen production – An alternative clean energy source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2337-2346.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pa:s0360544221018776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.