IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v225y2021ics0360544221003881.html
   My bibliography  Save this article

A new method for internal cooling of a large format lithium-ion battery pouch cell

Author

Listed:
  • Elsewify, O.
  • Souri, M.
  • Esfahani, M.N.
  • Hosseinzadeh, E.
  • Jabbari, M.

Abstract

In this paper a new battery thermal management system (BTMS) is proposed, where an internal cooling channel carrying water through the battery cells is integrated to a cell. A two-dimensional (2-D) thermal model is developed and validated against experimental data from literature for a 53Ah lithium-ion battery (LIB) cell. The model is then adapted to reflect the installation of an internal cooling channel. The influence of different parameters such as the channel size, the channel location, and the inlet flow velocity on the thermal performance of the LIB cell is investigated. The results show that using optimal channel size with combination of best channel location as well as inlet velocity reduces the peak temperature by 26% and 20% for 3C and 5C discharge rates, respectively. Consequently, the average cell temperature is reduced by 24% for a 3C discharge rate, and 15% for a 5C discharge rate.

Suggested Citation

  • Elsewify, O. & Souri, M. & Esfahani, M.N. & Hosseinzadeh, E. & Jabbari, M., 2021. "A new method for internal cooling of a large format lithium-ion battery pouch cell," Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:energy:v:225:y:2021:i:c:s0360544221003881
    DOI: 10.1016/j.energy.2021.120139
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221003881
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120139?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Rui & Gu, Junjie & Liu, Jie, 2017. "Optimization of a phase change material based internal cooling system for cylindrical Li-ion battery pack and a hybrid cooling design," Energy, Elsevier, vol. 135(C), pages 811-822.
    2. Yetik, Ozge & Karakoc, Tahir Hikmet, 2020. "A numerical study on the thermal performance of prismatic li-ion batteries for hibrid electric aircraft," Energy, Elsevier, vol. 195(C).
    3. Jiang, Le & Zhang, Hengyun & Li, Junwei & Xia, Peng, 2019. "Thermal performance of a cylindrical battery module impregnated with PCM composite based on thermoelectric cooling," Energy, Elsevier, vol. 188(C).
    4. Cao, Jiahao & Luo, Mingyun & Fang, Xiaoming & Ling, Ziye & Zhang, Zhengguo, 2020. "Liquid cooling with phase change materials for cylindrical Li-ion batteries: An experimental and numerical study," Energy, Elsevier, vol. 191(C).
    5. Wang, Fangxian & Cao, Jiahao & Ling, Ziye & Zhang, Zhengguo & Fang, Xiaoming, 2020. "Experimental and simulative investigations on a phase change material nano-emulsion-based liquid cooling thermal management system for a lithium-ion battery pack," Energy, Elsevier, vol. 207(C).
    6. Ma, Yan & Mou, Hongyuan & Zhao, Haiyan, 2020. "Cooling optimization strategy for lithium-ion batteries based on triple-step nonlinear method," Energy, Elsevier, vol. 201(C).
    7. Miranda, D. & Almeida, A.M. & Lanceros-Méndez, S. & Costa, C.M., 2019. "Effect of the active material type and battery geometry on the thermal behavior of lithium-ion batteries," Energy, Elsevier, vol. 185(C), pages 1250-1262.
    8. Zhang, Xiongwen & Kong, Xin & Li, Guojun & Li, Jun, 2014. "Thermodynamic assessment of active cooling/heating methods for lithium-ion batteries of electric vehicles in extreme conditions," Energy, Elsevier, vol. 64(C), pages 1092-1101.
    9. Fathabadi, Hassan, 2014. "High thermal performance lithium-ion battery pack including hybrid active–passive thermal management system for using in hybrid/electric vehicles," Energy, Elsevier, vol. 70(C), pages 529-538.
    10. Menale, Carla & D'Annibale, Francesco & Mazzarotta, Barbara & Bubbico, Roberto, 2019. "Thermal management of lithium-ion batteries: An experimental investigation," Energy, Elsevier, vol. 182(C), pages 57-71.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguyen, T.D. & Deng, J. & Robert, B. & Chen, W. & Siegmund, T., 2022. "Experimental investigation on cooling of prismatic battery cells through cell integrated features," Energy, Elsevier, vol. 244(PA).
    2. Astaneh, Majid & Andric, Jelena & Löfdahl, Lennart & Stopp, Peter, 2022. "Multiphysics simulation optimization framework for lithium-ion battery pack design for electric vehicle applications," Energy, Elsevier, vol. 239(PB).
    3. Hasan, Husam Abdulrasool & Togun, Hussein & Abed, Azher M & Biswas, Nirmalendu & Mohammed, Hayder I., 2023. "Thermal performance assessment for an array of cylindrical Lithium-Ion battery cells using an Air-Cooling system," Applied Energy, Elsevier, vol. 346(C).
    4. Guo, Shanshan & Yang, Ruixin & Shen, Weixiang & Liu, Yongsheng & Guo, Shenggang, 2022. "DC-AC hybrid rapid heating method for lithium-ion batteries at high state of charge operated from low temperatures," Energy, Elsevier, vol. 238(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jiangyun & Shao, Dan & Jiang, Liqin & Zhang, Guoqing & Wu, Hongwei & Day, Rodney & Jiang, Wenzhao, 2022. "Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Shen, Zu-Guo & Chen, Shuai & Liu, Xun & Chen, Ben, 2021. "A review on thermal management performance enhancement of phase change materials for vehicle lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    3. Wang, Huaibin & Wang, Shuyu & Feng, Xuning & Zhang, Xuan & Dai, Kangwei & Sheng, Jun & Zhao, Zhenyang & Du, Zhiming & Zhang, Zelin & Shen, Kai & Xu, Chengshan & Wang, Qinzheng & Sun, Xiaoyu & Li, Yanl, 2021. "An experimental study on the thermal characteristics of the Cell-To-Pack system," Energy, Elsevier, vol. 227(C).
    4. Morali, Ugur, 2022. "A numerical and statistical implementation of a thermal model for a lithium-ion battery," Energy, Elsevier, vol. 240(C).
    5. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    6. Zhou, Zhizuan & Wang, Dong & Peng, Yang & Li, Maoyu & Wang, Boxuan & Cao, Bei & Yang, Lizhong, 2022. "Experimental study on the thermal management performance of phase change material module for the large format prismatic lithium-ion battery," Energy, Elsevier, vol. 238(PC).
    7. Fan, Zhaohui & Gao, Renjing & Liu, Shutian, 2022. "Thermal conductivity enhancement and thermal saturation elimination designs of battery thermal management system for phase change materials based on triply periodic minimal surface," Energy, Elsevier, vol. 259(C).
    8. Zichen, Wang & Changqing, Du, 2021. "A comprehensive review on thermal management systems for power lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    9. Ardani, M.I. & Patel, Y. & Siddiq, A. & Offer, G.J. & Martinez-Botas, R.F., 2018. "Combined experimental and numerical evaluation of the differences between convective and conductive thermal control on the performance of a lithium ion cell," Energy, Elsevier, vol. 144(C), pages 81-97.
    10. Thomas Imre Cyrille Buidin & Florin Mariasiu, 2021. "Battery Thermal Management Systems: Current Status and Design Approach of Cooling Technologies," Energies, MDPI, vol. 14(16), pages 1-32, August.
    11. Ling, Ziye & Luo, Mingyun & Song, Jiaqi & Zhang, Wenbo & Zhang, Zhengguo & Fang, Xiaoming, 2021. "A fast-heat battery system using the heat released from detonated supercooled phase change materials," Energy, Elsevier, vol. 219(C).
    12. Wu, Weixiong & Yang, Xiaoqing & Zhang, Guoqing & Ke, Xiufang & Wang, Ziyuan & Situ, Wenfu & Li, Xinxi & Zhang, Jiangyun, 2016. "An experimental study of thermal management system using copper mesh-enhanced composite phase change materials for power battery pack," Energy, Elsevier, vol. 113(C), pages 909-916.
    13. Jin, Xianrong & Duan, Xiting & Jiang, Wenjuan & Wang, Yan & Zou, Youlan & Lei, Weixin & Sun, Lizhong & Ma, Zengsheng, 2021. "Structural design of a composite board/heat pipe based on the coupled electro-chemical-thermal model in battery thermal management system," Energy, Elsevier, vol. 216(C).
    14. Perez Estevez, Manuel Antonio & Calligaro, Sandro & Bottesi, Omar & Caligiuri, Carlo & Renzi, Massimiliano, 2021. "An electro-thermal model and its electrical parameters estimation procedure in a lithium-ion battery cell," Energy, Elsevier, vol. 234(C).
    15. Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jiangqiu & He, Xiangming, 2016. "A 3D thermal runaway propagation model for a large format lithium ion battery module," Energy, Elsevier, vol. 115(P1), pages 194-208.
    16. Zhao, Rui & Liu, Jie & Gu, Junjie, 2017. "A comprehensive study on Li-ion battery nail penetrations and the possible solutions," Energy, Elsevier, vol. 123(C), pages 392-401.
    17. Jeong, Dongho & Lee, Jongsoo, 2014. "Electrode design optimization of lithium secondary batteries to enhance adhesion and deformation capabilities," Energy, Elsevier, vol. 75(C), pages 525-533.
    18. Bazinski, S.J. & Wang, X. & Sangeorzan, B.P. & Guessous, L., 2016. "Measuring and assessing the effective in-plane thermal conductivity of lithium iron phosphate pouch cells," Energy, Elsevier, vol. 114(C), pages 1085-1092.
    19. Liang, Lin & Zhao, Yaohua & Diao, Yanhua & Ren, Ruyang & Jing, Heran, 2021. "Inclined U-shaped flat microheat pipe array configuration for cooling and heating lithium-ion battery modules in electric vehicles," Energy, Elsevier, vol. 235(C).
    20. Xu, Meng & Zhang, Zhuqian & Wang, Xia & Jia, Li & Yang, Lixin, 2015. "A pseudo three-dimensional electrochemical–thermal model of a prismatic LiFePO4 battery during discharge process," Energy, Elsevier, vol. 80(C), pages 303-317.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:225:y:2021:i:c:s0360544221003881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.