IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v75y2014icp525-533.html
   My bibliography  Save this article

Electrode design optimization of lithium secondary batteries to enhance adhesion and deformation capabilities

Author

Listed:
  • Jeong, Dongho
  • Lee, Jongsoo

Abstract

Safety, performance and lifetime of LSB (lithium secondary batteries) are affected by the adhesion of the active material to the electrode substance, and to the electrode deformation and the spring back limit in the electrode manufacturing process. This study explores the optimization process using decision tree analysis, an ANN (artificial neural network), and a multi-objective genetic algorithm. In the electrode design optimization, the objectives are to maximize the adhesion and to minimize the electrode deformation subjected to the allowable limit on the spring-back. Experimental data for use in design analysis and optimization is obtained via a measurement test. The decision tree analysis is first performed to extract major, effective parameters sensitive to adhesion force, electrode deformation and spring-back. The ANN-based approximate meta-models are then established for function approximations. The ANN-based causality analysis is further explored to determine dominant design variables for each of three design requirements for the optimization. A multi-objective optimization is finally conducted using ANN-based approximate meta-models. An optimized solution obtained from the numerical optimization process is compared with experimental data to verify the actual performance of the LSB in terms of physical and electro-chemical properties.

Suggested Citation

  • Jeong, Dongho & Lee, Jongsoo, 2014. "Electrode design optimization of lithium secondary batteries to enhance adhesion and deformation capabilities," Energy, Elsevier, vol. 75(C), pages 525-533.
  • Handle: RePEc:eee:energy:v:75:y:2014:i:c:p:525-533
    DOI: 10.1016/j.energy.2014.08.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214009499
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.08.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xiongwen & Kong, Xin & Li, Guojun & Li, Jun, 2014. "Thermodynamic assessment of active cooling/heating methods for lithium-ion batteries of electric vehicles in extreme conditions," Energy, Elsevier, vol. 64(C), pages 1092-1101.
    2. Pei, Lei & Zhu, Chunbo & Wang, Tiansi & Lu, Rengui & Chan, C.C., 2014. "Online peak power prediction based on a parameter and state estimator for lithium-ion batteries in electric vehicles," Energy, Elsevier, vol. 66(C), pages 766-778.
    3. Fathabadi, Hassan, 2014. "High thermal performance lithium-ion battery pack including hybrid active–passive thermal management system for using in hybrid/electric vehicles," Energy, Elsevier, vol. 70(C), pages 529-538.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eddahech, Akram & Briat, Olivier & Vinassa, Jean-Michel, 2015. "Performance comparison of four lithium–ion battery technologies under calendar aging," Energy, Elsevier, vol. 84(C), pages 542-550.
    2. Li, Jianwei & Gee, Anthony M. & Zhang, Min & Yuan, Weijia, 2015. "Analysis of battery lifetime extension in a SMES-battery hybrid energy storage system using a novel battery lifetime model," Energy, Elsevier, vol. 86(C), pages 175-185.
    3. Kou, Huaqin & Luo, Wenhua & Huang, Zhiyong & Sang, Ge & Meng, Daqiao & Zhang, Guanghui & Chen, Changan & Luo, Deli & Hu, Changwen, 2015. "Fabrication and experimental validation of a full-scale depleted uranium bed with thin double-layered annulus configuration for hydrogen isotopes recovery and delivery," Energy, Elsevier, vol. 90(P1), pages 588-594.
    4. Heidarian, Alireza & Cheung, Sherman C.P. & Ojha, Ruchika & Rosengarten, Gary, 2022. "Effects of current collector shape and configuration on charge percolation and electric conductivity of slurry electrodes for electrochemical systems," Energy, Elsevier, vol. 239(PD).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elsewify, O. & Souri, M. & Esfahani, M.N. & Hosseinzadeh, E. & Jabbari, M., 2021. "A new method for internal cooling of a large format lithium-ion battery pouch cell," Energy, Elsevier, vol. 225(C).
    2. Zichen, Wang & Changqing, Du, 2021. "A comprehensive review on thermal management systems for power lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Bai, Hongwei & Liu, Zhaoyang & Sun, Darren Delai & Chan, Siew Hwa, 2014. "Hierarchical 3D micro-/nano-V2O5 (vanadium pentoxide) spheres as cathode materials for high-energy and high-power lithium ion-batteries," Energy, Elsevier, vol. 76(C), pages 607-613.
    4. Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jiangqiu & He, Xiangming, 2016. "A 3D thermal runaway propagation model for a large format lithium ion battery module," Energy, Elsevier, vol. 115(P1), pages 194-208.
    5. Zhao, Rui & Liu, Jie & Gu, Junjie, 2017. "A comprehensive study on Li-ion battery nail penetrations and the possible solutions," Energy, Elsevier, vol. 123(C), pages 392-401.
    6. Bazinski, S.J. & Wang, X. & Sangeorzan, B.P. & Guessous, L., 2016. "Measuring and assessing the effective in-plane thermal conductivity of lithium iron phosphate pouch cells," Energy, Elsevier, vol. 114(C), pages 1085-1092.
    7. Kang, Jianqiang & Yan, Fuwu & Zhang, Pei & Du, Changqing, 2014. "Comparison of comprehensive properties of Ni-MH (nickel-metal hydride) and Li-ion (lithium-ion) batteries in terms of energy efficiency," Energy, Elsevier, vol. 70(C), pages 618-625.
    8. Wu, Weixiong & Yang, Xiaoqing & Zhang, Guoqing & Ke, Xiufang & Wang, Ziyuan & Situ, Wenfu & Li, Xinxi & Zhang, Jiangyun, 2016. "An experimental study of thermal management system using copper mesh-enhanced composite phase change materials for power battery pack," Energy, Elsevier, vol. 113(C), pages 909-916.
    9. Xu, Meng & Zhang, Zhuqian & Wang, Xia & Jia, Li & Yang, Lixin, 2015. "A pseudo three-dimensional electrochemical–thermal model of a prismatic LiFePO4 battery during discharge process," Energy, Elsevier, vol. 80(C), pages 303-317.
    10. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    11. Pang, Haidong & Yang, Zunxian & Lv, Jun & Yan, Wenhuan & Guo, Tailiang, 2014. "Novel MnOx@Carbon hybrid nanowires with core/shell architecture as highly reversible anode materials for lithium ion batteries," Energy, Elsevier, vol. 69(C), pages 392-398.
    12. Srivastava, Raj Shekhar & Kumar, Anuruddh & Thakur, Harishchandra & Vaish, Rahul, 2022. "Solar assisted thermoelectric cooling/heating system for vehicle cabin during parking: A numerical study," Renewable Energy, Elsevier, vol. 181(C), pages 384-403.
    13. Xu Lei & Xi Zhao & Guiping Wang & Weiyu Liu, 2019. "A Novel Temperature–Hysteresis Model for Power Battery of Electric Vehicles with an Adaptive Joint Estimator on State of Charge and Power," Energies, MDPI, vol. 12(19), pages 1-24, September.
    14. Zhou, Zhizuan & Wang, Dong & Peng, Yang & Li, Maoyu & Wang, Boxuan & Cao, Bei & Yang, Lizhong, 2022. "Experimental study on the thermal management performance of phase change material module for the large format prismatic lithium-ion battery," Energy, Elsevier, vol. 238(PC).
    15. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    16. Qi, Kaijian & Zhang, Weigang & Zhou, Wei & Cheng, Jifu, 2022. "Integrated battery power capability prediction and driving torque regulation for electric vehicles: A reduced order MPC approach," Applied Energy, Elsevier, vol. 317(C).
    17. Singh, Karanjot & Tjahjowidodo, Tegoeh & Boulon, Loïc & Feroskhan, Mir, 2022. "Framework for measurement of battery state-of-health (resistance) integrating overpotential effects and entropy changes using energy equilibrium," Energy, Elsevier, vol. 239(PA).
    18. Jilte, Ravindra & Afzal, Asif & Panchal, Satyam, 2021. "A novel battery thermal management system using nano-enhanced phase change materials," Energy, Elsevier, vol. 219(C).
    19. Wang, Hongqiang & Li, Sha & Li, Dan & Chen, Zhixin & Liu, Hua Kun & Guo, Zaiping, 2014. "TiO2 coated three-dimensional hierarchically ordered porous sulfur electrode for the lithium/sulfur rechargeable batteries," Energy, Elsevier, vol. 75(C), pages 597-602.
    20. Dong, Guangzhong & Zhang, Xu & Zhang, Chenbin & Chen, Zonghai, 2015. "A method for state of energy estimation of lithium-ion batteries based on neural network model," Energy, Elsevier, vol. 90(P1), pages 879-888.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:75:y:2014:i:c:p:525-533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.