IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v198y2020ics036054422030462x.html
   My bibliography  Save this article

Techno-economic and climate impact analysis of carbon utilization process for methanol production from blast furnace gas over Cu/ZnO/Al2O3 catalyst

Author

Listed:
  • Kim, Dongin
  • Han, Jeehoon

Abstract

This paper presents conceptual design, economic evaluation, and sensitivity analysis of a commercial scale carbon-utilization process that produces methanol (MeOH) from blast furnace gas (BFG). Three process cases that use different N2 compositions in the feed (Case 1: 40%, Case 2: 35%, and Case 3: 30%) are simulated. The kinetic model over a commercial Cu/ZnO/Al2O3 catalyst is used to consider the effect of N2 on the reaction and to find the optimal process synthesis condition. The proposed process yields 78.3–113.3 ktMeOH/y with 32.2–40.2% energy efficiency, and after heat integration it has no requirement for external heat. Case 3 improves energy efficiency by 5.2% compared to the conventional electricity production process from BFG. The process is assessed using techno-economic and environmental metrics. The lowest minimum selling price of US$ 902/tMeOH and the highest potential to reduce CO2 emissions of 3.9 tCO2/tMeOH are obtained for Case 3. Sensitivity analysis for H2, electricity price and major economic assumptions shows that Case 3 is the better option in the ranges of H2 price, except high-priced H2 produced by solar energy, and in ranges of electricity price using current technology. Case 3 is a techno-economically viable alternative under positive assumptions.

Suggested Citation

  • Kim, Dongin & Han, Jeehoon, 2020. "Techno-economic and climate impact analysis of carbon utilization process for methanol production from blast furnace gas over Cu/ZnO/Al2O3 catalyst," Energy, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:energy:v:198:y:2020:i:c:s036054422030462x
    DOI: 10.1016/j.energy.2020.117355
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422030462X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117355?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kralj, Anita Kovač, 2010. "Silver and oxide hybrids of catalysts during formaldehyde production," Energy, Elsevier, vol. 35(6), pages 2528-2534.
    2. Uribe-Soto, Wilmar & Portha, Jean-François & Commenge, Jean-Marc & Falk, Laurent, 2017. "A review of thermochemical processes and technologies to use steelworks off-gases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 809-823.
    3. Yang, Yu & Liu, Jing & Shen, Weifeng & Li, Jie & Chien, I-Lung, 2018. "High-efficiency utilization of CO2 in the methanol production by a novel parallel-series system combining steam and dry methane reforming," Energy, Elsevier, vol. 158(C), pages 820-829.
    4. Pérez-Fortes, Mar & Schöneberger, Jan C. & Boulamanti, Aikaterini & Tzimas, Evangelos, 2016. "Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment," Applied Energy, Elsevier, vol. 161(C), pages 718-732.
    5. Matzen, Michael & Alhajji, Mahdi & Demirel, Yaşar, 2015. "Chemical storage of wind energy by renewable methanol production: Feasibility analysis using a multi-criteria decision matrix," Energy, Elsevier, vol. 93(P1), pages 343-353.
    6. AlSayed, Ahmed & Fergala, Ahmed & Khattab, Saif & ElSharkawy, Adham & Eldyasti, Ahmed, 2018. "Optimization of methane bio-hydroxylation using waste activated sludge mixed culture of type I methanotrophs as biocatalyst," Applied Energy, Elsevier, vol. 211(C), pages 755-763.
    7. Saebea, Dang & Authayanun, Suthida & Arpornwichanop, Amornchai, 2019. "Process simulation of bio-dimethyl ether synthesis from tri-reforming of biogas: CO2 utilization," Energy, Elsevier, vol. 175(C), pages 36-45.
    8. Yousefi, Ahmad & Eslamloueyan, Reza & Kazerooni, Nooshin Moradi, 2017. "Optimal conditions in direct dimethyl ether synthesis from syngas utilizing a dual-type fluidized bed reactor," Energy, Elsevier, vol. 125(C), pages 275-286.
    9. Yan, Junna & Zhao, Tao & Kang, Jidong, 2016. "Sensitivity analysis of technology and supply change for CO2 emission intensity of energy-intensive industries based on input–output model," Applied Energy, Elsevier, vol. 171(C), pages 456-467.
    10. Salkuyeh, Yaser Khojasteh & Elkamel, Ali & Thé, Jesse & Fowler, Michael, 2016. "Development and techno-economic analysis of an integrated petroleum coke, biomass, and natural gas polygeneration process," Energy, Elsevier, vol. 113(C), pages 861-874.
    11. Ben G. Li & Yibei Liu, 2018. "The Production Life Cycle," Scandinavian Journal of Economics, Wiley Blackwell, vol. 120(4), pages 1139-1170, October.
    12. Parra, David & Zhang, Xiaojin & Bauer, Christian & Patel, Martin K., 2017. "An integrated techno-economic and life cycle environmental assessment of power-to-gas systems," Applied Energy, Elsevier, vol. 193(C), pages 440-454.
    13. Lundgren, J. & Ekbom, T. & Hulteberg, C. & Larsson, M. & Grip, C.-E. & Nilsson, L. & Tunå, P., 2013. "Methanol production from steel-work off-gases and biomass based synthesis gas," Applied Energy, Elsevier, vol. 112(C), pages 431-439.
    14. Rosenfeld, Daniel C. & Böhm, Hans & Lindorfer, Johannes & Lehner, Markus, 2020. "Scenario analysis of implementing a power-to-gas and biomass gasification system in an integrated steel plant: A techno-economic and environmental study," Renewable Energy, Elsevier, vol. 147(P1), pages 1511-1524.
    15. Blumberg, Timo & Morosuk, Tatiana & Tsatsaronis, George, 2017. "Exergy-based evaluation of methanol production from natural gas with CO2 utilization," Energy, Elsevier, vol. 141(C), pages 2528-2539.
    16. Xu, Dikai & Zhang, Yitao & Hsieh, Tien-Lin & Guo, Mengqing & Qin, Lang & Chung, Cheng & Fan, Liang-Shih & Tong, Andrew, 2018. "A novel chemical looping partial oxidation process for thermochemical conversion of biomass to syngas," Applied Energy, Elsevier, vol. 222(C), pages 119-131.
    17. Reyes Valle, C. & Villanueva Perales, A.L. & Vidal-Barrero, F. & Gómez-Barea, A., 2013. "Techno-economic assessment of biomass-to-ethanol by indirect fluidized bed gasification: Impact of reforming technologies and comparison with entrained flow gasification," Applied Energy, Elsevier, vol. 109(C), pages 254-266.
    18. Lythcke-Jørgensen, Christoffer & Clausen, Lasse Røngaard & Algren, Loui & Hansen, Anders Bavnhøj & Münster, Marie & Gadsbøll, Rasmus Østergaard & Haglind, Fredrik, 2017. "Optimization of a flexible multi-generation system based on wood chip gasification and methanol production," Applied Energy, Elsevier, vol. 192(C), pages 337-359.
    19. Weisser, Daniel, 2007. "A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies," Energy, Elsevier, vol. 32(9), pages 1543-1559.
    20. Yi, Qun & Gong, Min-Hui & Huang, Yi & Feng, Jie & Hao, Yan-Hong & Zhang, Ji-Long & Li, Wen-Ying, 2016. "Process development of coke oven gas to methanol integrated with CO2 recycle for satisfactory techno-economic performance," Energy, Elsevier, vol. 112(C), pages 618-628.
    21. Ali Saleh Bairq, Zain & Gao, Hongxia & Huang, Yufei & Zhang, Haiyan & Liang, Zhiwu, 2019. "Enhancing CO2 desorption performance in rich MEA solution by addition of SO42−/ZrO2/SiO2 bifunctional catalyst," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shamsi, Mohammad & Naeiji, Esfandiyar & Rooeentan, Saeed & Shahandashty, Behnam Fayyaz & Namegoshayfard, Parham & Bonyadi, Mohammad, 2023. "Proposal and investigation of CO2 capture from fired heater flue gases to increase methanol production: A case study," Energy, Elsevier, vol. 274(C).
    2. Kang, Dongseong & Byun, Jaewon & Han, Jee-hoon, 2023. "Environmental impact analysis of steelmaking off-gases on methanol production," Energy, Elsevier, vol. 277(C).
    3. Do, Thai Ngan & Hur, Young Gul & Chung, Hegwon & Kim, Jiyong, 2023. "Potentials and benefit assessment of green fuels from residue gas via gas-to-liquid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    4. Huang, Yue & Zhu, Lin & He, Yangdong & Zeng, Xingyan & Wang, Yuan & Hao, Qiang & Zhang, Chaoli & Zhu, Yifei, 2024. "Exergoenvironment evaluation of carbon resource conversion and utilization via CO2 direct hydrogenation for methanol and power cogeneration," Energy, Elsevier, vol. 306(C).
    5. Jin, Jian & Wang, Hongsheng & Shen, Yili & Shu, Ziyun & Liu, Taixiu & Li, Wenjia, 2023. "Thermodynamic analysis of methane to methanol through a two-step process driven by concentrated solar energy," Energy, Elsevier, vol. 273(C).
    6. Kim, Soosan & Byun, Jaewon & Park, Hoyoung & Lee, Nahyeon & Han, Jeehoon & Lee, Jechan, 2022. "Energy-efficient thermal waste treatment process with no CO2 emission: A case study of waste tea bag," Energy, Elsevier, vol. 241(C).
    7. Qiu, Fei & Sun, Zhen & Li, Huiping & Qian, Qian, 2023. "Process simulation and multi-aspect analysis of methanol production through blast furnace gas and landfill gas," Energy, Elsevier, vol. 285(C).
    8. Michael Bampaou & Kyriakos Panopoulos & Panos Seferlis & Amaia Sasiain & Stephane Haag & Philipp Wolf-Zoellner & Markus Lehner & Leokadia Rog & Przemyslaw Rompalski & Sebastian Kolb & Nina Kieberger &, 2022. "Economic Evaluation of Renewable Hydrogen Integration into Steelworks for the Production of Methanol and Methane," Energies, MDPI, vol. 15(13), pages 1-26, June.
    9. Kim, Jinsu & Kim, Jungil & Oh, Hyunmin & Lee, Seokyoung & Lee, In-Beum & Yoon, Young-Seek, 2022. "Techno-economic and environmental impact analysis of tuyere injection of hot reducing gas from low-rank coal gasification in blast furnace," Energy, Elsevier, vol. 241(C).
    10. Bampaou, M. & Haag, S. & Kyriakides, A.-S. & Panopoulos, K.D. & Seferlis, P., 2023. "Optimizing methanol synthesis combining steelworks off-gases and renewable hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Qian & Chang, Yuan & Yuan, Bo & Song, Zhaozheng & Xue, Jinjun & Jiang, Qingzhe, 2022. "Utilizing carbon dioxide from refinery flue gas for methanol production: System design and assessment," Energy, Elsevier, vol. 249(C).
    2. Kotowicz, Janusz & Węcel, Daniel & Brzęczek, Mateusz, 2021. "Analysis of the work of a “renewable” methanol production installation based ON H2 from electrolysis and CO2 from power plants," Energy, Elsevier, vol. 221(C).
    3. Shin, Sunkyu & Lee, Jeong-Keun & Lee, In-Beum, 2020. "Development and techno-economic study of methanol production from coke-oven gas blended with Linz Donawitz gas," Energy, Elsevier, vol. 200(C).
    4. Kim, Dongin & Han, Jeehoon, 2020. "Comprehensive analysis of two catalytic processes to produce formic acid from carbon dioxide," Applied Energy, Elsevier, vol. 264(C).
    5. Michael Bampaou & Kyriakos Panopoulos & Panos Seferlis & Amaia Sasiain & Stephane Haag & Philipp Wolf-Zoellner & Markus Lehner & Leokadia Rog & Przemyslaw Rompalski & Sebastian Kolb & Nina Kieberger &, 2022. "Economic Evaluation of Renewable Hydrogen Integration into Steelworks for the Production of Methanol and Methane," Energies, MDPI, vol. 15(13), pages 1-26, June.
    6. Yifan Wang & Laurence A. Wright, 2021. "A Comparative Review of Alternative Fuels for the Maritime Sector: Economic, Technology, and Policy Challenges for Clean Energy Implementation," World, MDPI, vol. 2(4), pages 1-26, October.
    7. Tabibian, Seyed Shayan & Sharifzadeh, Mahdi, 2023. "Statistical and analytical investigation of methanol applications, production technologies, value-chain and economy with a special focus on renewable methanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    8. Kotowicz, J. & Brzęczek, M., 2021. "Methods to increase the efficiency of production and purification installations of renewable methanol," Renewable Energy, Elsevier, vol. 177(C), pages 568-583.
    9. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    10. Xiang, Dong & Xiang, Junjie & Sun, Zhe & Cao, Yan, 2017. "The integrated coke-oven gas and pulverized coke gasification for methanol production with highly efficient hydrogen utilization," Energy, Elsevier, vol. 140(P1), pages 78-91.
    11. Chen, Qianqian & Gu, Yu & Tang, Zhiyong & Wei, Wei & Sun, Yuhan, 2018. "Assessment of low-carbon iron and steel production with CO2 recycling and utilization technologies: A case study in China," Applied Energy, Elsevier, vol. 220(C), pages 192-207.
    12. Shah, Vedant & Cheng, Zhuo & Baser, Deven S. & Fan, Jonathan A. & Fan, Liang-Shih, 2021. "Highly Selective Production of Syngas from Chemical Looping Reforming of Methane with CO2 Utilization on MgO-supported Calcium Ferrite Redox Materials," Applied Energy, Elsevier, vol. 282(PA).
    13. Rahmat, Yoga & Maier, Simon & Moser, Francisco & Raab, Moritz & Hoffmann, Christian & Repke, Jens-Uwe & Dietrich, Ralph-Uwe, 2023. "Techno-economic and exergy analysis of e-methanol production under fixed operating conditions in Germany," Applied Energy, Elsevier, vol. 351(C).
    14. Crivellari, Anna & Cozzani, Valerio & Dincer, Ibrahim, 2019. "Exergetic and exergoeconomic analyses of novel methanol synthesis processes driven by offshore renewable energies," Energy, Elsevier, vol. 187(C).
    15. Patel, Sanjay K.S. & Kondaveeti, Sanath & Otari, Sachin V. & Pagolu, Ravi T. & Jeong, Seong Hun & Kim, Sun Chang & Cho, Byung-Kwan & Kang, Yun Chan & Lee, Jung-Kul, 2018. "Repeated batch methanol production from a simulated biogas mixture using immobilized Methylocystis bryophila," Energy, Elsevier, vol. 145(C), pages 477-485.
    16. Hermesmann, M. & Grübel, K. & Scherotzki, L. & Müller, T.E., 2021. "Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    17. Yih-Hang Chen & David Shan-Hill Wong & Ya-Chien Chen & Chao-Min Chang & Hsuan Chang, 2019. "Design and Performance Comparison of Methanol Production Processes with Carbon Dioxide Utilization," Energies, MDPI, vol. 12(22), pages 1-18, November.
    18. Quarton, Christopher J. & Samsatli, Sheila, 2020. "The value of hydrogen and carbon capture, storage and utilisation in decarbonising energy: Insights from integrated value chain optimisation," Applied Energy, Elsevier, vol. 257(C).
    19. Nakyai, Teeranun & Patcharavorachot, Yaneeporn & Arpornwichanop, Amornchai & Saebea, Dang, 2020. "Comparative exergoeconomic analysis of indirect and direct bio-dimethyl ether syntheses based on air-steam biomass gasification with CO2 utilization," Energy, Elsevier, vol. 209(C).
    20. Huang, Yue & Zhu, Lin & He, Yangdong & Zeng, Xingyan & Wang, Yuan & Hao, Qiang & Zhang, Chaoli & Zhu, Yifei, 2024. "Exergoenvironment evaluation of carbon resource conversion and utilization via CO2 direct hydrogenation for methanol and power cogeneration," Energy, Elsevier, vol. 306(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:198:y:2020:i:c:s036054422030462x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.