IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v177y2021icp568-583.html
   My bibliography  Save this article

Methods to increase the efficiency of production and purification installations of renewable methanol

Author

Listed:
  • Kotowicz, J.
  • Brzęczek, M.

Abstract

This article presents methods to increase the efficiency of liquid methanol production and purification installations. Three solutions were proposed: CO2 compression on the side of the CCS power plant, replacement of the throttle valve with an expander, and replacement of the heat exchanger with an ORC module. The calculation methodology was presented, and each concept was thermodynamically analyzed and compared with the reference variant. The installation for the synthesis of liquid methanol was integrated with a wind farm with a nominal power of 8 MW, a photovoltaic farm with a capacity of 2 MW (based on the measurements of the photovoltaic farm installed on the campus of the Silesian University of Technology in Poland), and a water electrolysis installation. This made it possible to increase the efficiency of the entire system to 52.41%, which corresponds to an increase in efficiency relative to the reference case of 3.57 pp. The synergy effect accompanying the use of CO2 from CCS power plants was also noticed, consisting in a simultaneous increase in the efficiency of both the analyzed installation and the power plant.

Suggested Citation

  • Kotowicz, J. & Brzęczek, M., 2021. "Methods to increase the efficiency of production and purification installations of renewable methanol," Renewable Energy, Elsevier, vol. 177(C), pages 568-583.
  • Handle: RePEc:eee:renene:v:177:y:2021:i:c:p:568-583
    DOI: 10.1016/j.renene.2021.05.142
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121008259
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.05.142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Clausen, Lasse R. & Houbak, Niels & Elmegaard, Brian, 2010. "Technoeconomic analysis of a methanol plant based on gasification of biomass and electrolysis of water," Energy, Elsevier, vol. 35(5), pages 2338-2347.
    2. Bos, M.J. & Kersten, S.R.A. & Brilman, D.W.F., 2020. "Wind power to methanol: Renewable methanol production using electricity, electrolysis of water and CO2 air capture," Applied Energy, Elsevier, vol. 264(C).
    3. Xiang, Dong & Xiang, Junjie & Sun, Zhe & Cao, Yan, 2017. "The integrated coke-oven gas and pulverized coke gasification for methanol production with highly efficient hydrogen utilization," Energy, Elsevier, vol. 140(P1), pages 78-91.
    4. Kotowicz, Janusz & Węcel, Daniel & Jurczyk, Michał, 2018. "Analysis of component operation in power-to-gas-to-power installations," Applied Energy, Elsevier, vol. 216(C), pages 45-59.
    5. Karasu, Seçkin & Altan, Aytaç & Bekiros, Stelios & Ahmad, Wasim, 2020. "A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series," Energy, Elsevier, vol. 212(C).
    6. Blumberg, Timo & Morosuk, Tatiana & Tsatsaronis, George, 2017. "Exergy-based evaluation of methanol production from natural gas with CO2 utilization," Energy, Elsevier, vol. 141(C), pages 2528-2539.
    7. Pérez-Fortes, Mar & Schöneberger, Jan C. & Boulamanti, Aikaterini & Tzimas, Evangelos, 2016. "Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment," Applied Energy, Elsevier, vol. 161(C), pages 718-732.
    8. Matzen, Michael & Alhajji, Mahdi & Demirel, Yaşar, 2015. "Chemical storage of wind energy by renewable methanol production: Feasibility analysis using a multi-criteria decision matrix," Energy, Elsevier, vol. 93(P1), pages 343-353.
    9. Kotowicz, Janusz & Węcel, Daniel & Brzęczek, Mateusz, 2021. "Analysis of the work of a “renewable” methanol production installation based ON H2 from electrolysis and CO2 from power plants," Energy, Elsevier, vol. 221(C).
    10. Andika, Riezqa & Nandiyanto, Asep Bayu Dani & Putra, Zulfan Adi & Bilad, Muhammad Roil & Kim, Young & Yun, Choa Mun & Lee, Moonyong, 2018. "Co-electrolysis for power-to-methanol applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 227-241.
    11. Kler, Aleksandr M. & Tyurina, Elina A. & Mednikov, Aleksandr S., 2018. "A plant for methanol and electricity production: Technical-economic analysis," Energy, Elsevier, vol. 165(PB), pages 890-899.
    12. Sayah, Anita K. & Sayah, Athena K., 2011. "Wind-hydrogen utilization for methanol production: An economy assessment in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3570-3574.
    13. Kauw, Marco & Benders, René M.J. & Visser, Cindy, 2015. "Green methanol from hydrogen and carbon dioxide using geothermal energy and/or hydropower in Iceland or excess renewable electricity in Germany," Energy, Elsevier, vol. 90(P1), pages 208-217.
    14. González-Aparicio, I. & Kapetaki, Z. & Tzimas, E., 2018. "Wind energy and carbon dioxide utilisation as an alternative business model for energy producers: A case study in Spain," Applied Energy, Elsevier, vol. 222(C), pages 216-227.
    15. Crivellari, Anna & Cozzani, Valerio & Dincer, Ibrahim, 2019. "Exergetic and exergoeconomic analyses of novel methanol synthesis processes driven by offshore renewable energies," Energy, Elsevier, vol. 187(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Janusz Kotowicz & Mateusz Brzęczek & Aleksandra Walewska & Kamila Szykowska, 2022. "Methanol Production in the Brayton Cycle," Energies, MDPI, vol. 15(4), pages 1-14, February.
    2. Tabibian, Seyed Shayan & Sharifzadeh, Mahdi, 2023. "Statistical and analytical investigation of methanol applications, production technologies, value-chain and economy with a special focus on renewable methanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kotowicz, Janusz & Węcel, Daniel & Brzęczek, Mateusz, 2021. "Analysis of the work of a “renewable” methanol production installation based ON H2 from electrolysis and CO2 from power plants," Energy, Elsevier, vol. 221(C).
    2. Tabibian, Seyed Shayan & Sharifzadeh, Mahdi, 2023. "Statistical and analytical investigation of methanol applications, production technologies, value-chain and economy with a special focus on renewable methanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    3. Ma, Qian & Chang, Yuan & Yuan, Bo & Song, Zhaozheng & Xue, Jinjun & Jiang, Qingzhe, 2022. "Utilizing carbon dioxide from refinery flue gas for methanol production: System design and assessment," Energy, Elsevier, vol. 249(C).
    4. Campion, Nicolas & Nami, Hossein & Swisher, Philip R. & Vang Hendriksen, Peter & Münster, Marie, 2023. "Techno-economic assessment of green ammonia production with different wind and solar potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    5. Ravikumar, Dwarakanath & Keoleian, Gregory & Miller, Shelie, 2020. "The environmental opportunity cost of using renewable energy for carbon capture and utilization for methanol production," Applied Energy, Elsevier, vol. 279(C).
    6. Kim, Dongin & Han, Jeehoon, 2020. "Techno-economic and climate impact analysis of carbon utilization process for methanol production from blast furnace gas over Cu/ZnO/Al2O3 catalyst," Energy, Elsevier, vol. 198(C).
    7. Rahmat, Yoga & Maier, Simon & Moser, Francisco & Raab, Moritz & Hoffmann, Christian & Repke, Jens-Uwe & Dietrich, Ralph-Uwe, 2023. "Techno-economic and exergy analysis of e-methanol production under fixed operating conditions in Germany," Applied Energy, Elsevier, vol. 351(C).
    8. Hanfei Zhang & Ligang Wang & Jan Van herle & François Maréchal & Umberto Desideri, 2019. "Techno-Economic Optimization of CO 2 -to-Methanol with Solid-Oxide Electrolyzer," Energies, MDPI, vol. 12(19), pages 1-15, September.
    9. Adnan, Muflih A. & Kibria, Md Golam, 2020. "Comparative techno-economic and life-cycle assessment of power-to-methanol synthesis pathways," Applied Energy, Elsevier, vol. 278(C).
    10. Wiesberg, Igor Lapenda & Brigagão, George Victor & Araújo, Ofélia de Queiroz F. & de Medeiros, José Luiz, 2019. "Carbon dioxide management via exergy-based sustainability assessment: Carbon Capture and Storage versus conversion to methanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 720-732.
    11. Bos, M.J. & Kersten, S.R.A. & Brilman, D.W.F., 2020. "Wind power to methanol: Renewable methanol production using electricity, electrolysis of water and CO2 air capture," Applied Energy, Elsevier, vol. 264(C).
    12. Zhang, Hanfei & Desideri, Umberto, 2020. "Techno-economic optimization of power-to-methanol with co-electrolysis of CO2 and H2O in solid-oxide electrolyzers," Energy, Elsevier, vol. 199(C).
    13. Lee, Boreum & Lee, Hyunjun & Lim, Dongjun & Brigljević, Boris & Cho, Wonchul & Cho, Hyun-Seok & Kim, Chang-Hee & Lim, Hankwon, 2020. "Renewable methanol synthesis from renewable H2 and captured CO2: How can power-to-liquid technology be economically feasible?," Applied Energy, Elsevier, vol. 279(C).
    14. Samuel Simon Araya & Vincenzo Liso & Xiaoti Cui & Na Li & Jimin Zhu & Simon Lennart Sahlin & Søren Højgaard Jensen & Mads Pagh Nielsen & Søren Knudsen Kær, 2020. "A Review of The Methanol Economy: The Fuel Cell Route," Energies, MDPI, vol. 13(3), pages 1-32, January.
    15. Crivellari, Anna & Cozzani, Valerio & Dincer, Ibrahim, 2019. "Exergetic and exergoeconomic analyses of novel methanol synthesis processes driven by offshore renewable energies," Energy, Elsevier, vol. 187(C).
    16. Hermesmann, M. & Grübel, K. & Scherotzki, L. & Müller, T.E., 2021. "Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    17. Yih-Hang Chen & David Shan-Hill Wong & Ya-Chien Chen & Chao-Min Chang & Hsuan Chang, 2019. "Design and Performance Comparison of Methanol Production Processes with Carbon Dioxide Utilization," Energies, MDPI, vol. 12(22), pages 1-18, November.
    18. Uchman, Wojciech & Kotowicz, Janusz & Sekret, Robert, 2022. "Investigation on green hydrogen generation devices dedicated for integrated renewable energy farm: Solar and wind," Applied Energy, Elsevier, vol. 328(C).
    19. Ali, Shahid & Sørensen, Kim & Nielsen, Mads P., 2020. "Modeling a novel combined solid oxide electrolysis cell (SOEC) - Biomass gasification renewable methanol production system," Renewable Energy, Elsevier, vol. 154(C), pages 1025-1034.
    20. Nakyai, Teeranun & Patcharavorachot, Yaneeporn & Arpornwichanop, Amornchai & Saebea, Dang, 2020. "Comparative exergoeconomic analysis of indirect and direct bio-dimethyl ether syntheses based on air-steam biomass gasification with CO2 utilization," Energy, Elsevier, vol. 209(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:177:y:2021:i:c:p:568-583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.