IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v112y2013icp431-439.html
   My bibliography  Save this article

Methanol production from steel-work off-gases and biomass based synthesis gas

Author

Listed:
  • Lundgren, J.
  • Ekbom, T.
  • Hulteberg, C.
  • Larsson, M.
  • Grip, C.-E.
  • Nilsson, L.
  • Tunå, P.

Abstract

Off-gases generated during steelmaking are to a large extent used as fuels in process units within the plant. The surplus gases are commonly supplied to a plant for combined heat and power production. The main objective of this study has been to techno-economically investigate the feasibility of an innovative way of producing methanol from these off-gases, thereby upgrading the economic value of the gases. Cases analyzed have included both off-gases only and mixes with synthesis gas, based on 300MWth of biomass. The SSAB steel plant in the town of Luleå, Sweden has been used as a basis. The studied biomass gasification technology is based on a fluidized-bed gasification technology, where the production capacity is determined from case to case coupled to the heat production required to satisfy the local district heating demand. Critical factors are the integration of the gases with availability to the synthesis unit, to balance the steam system of the biorefinery and to meet the district heat demand of Luleå. The annual production potential of methanol, the overall energy efficiency, the methanol production cost and the environmental effect have been assessed for each case. Depending on case, in the range of 102,000–287,000ton of methanol can be produced per year at production costs in the range of 0.80–1.1EUR per liter petrol equivalent at assumed conditions. The overall energy efficiency of the plant increases in all the cases, up to nearly 14%-units on an annual average, due to a more effective utilization of the off-gases. The main conclusion is that integrating methanol production in a steel plant can be made economically feasible and may result in environmental benefits as well as energy efficiency improvements.

Suggested Citation

  • Lundgren, J. & Ekbom, T. & Hulteberg, C. & Larsson, M. & Grip, C.-E. & Nilsson, L. & Tunå, P., 2013. "Methanol production from steel-work off-gases and biomass based synthesis gas," Applied Energy, Elsevier, vol. 112(C), pages 431-439.
  • Handle: RePEc:eee:appene:v:112:y:2013:i:c:p:431-439
    DOI: 10.1016/j.apenergy.2013.03.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913001967
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.03.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Hongqiang & Hong, Hui & Jin, Hongguang & Cai, Ruixian, 2010. "Analysis of a feasible polygeneration system for power and methanol production taking natural gas and biomass as materials," Applied Energy, Elsevier, vol. 87(9), pages 2846-2853, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Changming & Yi, Lin & Zhang, Zilei & Sun, Jingzhen & Liu, Fenghua, 2020. "Assessment of ultra-lean burn characteristics for a stratified-charge direct-injection spark-ignition methanol engine under different high compression ratios," Applied Energy, Elsevier, vol. 261(C).
    2. Hou, Rui & Zhang, Nachuan & Yang, Chengsheng & Zhao, Jing & Li, Peng & Sun, Bo, 2023. "A novel structure of natural gas, electricity, and methanol production using a combined reforming cycle: Integration of biogas upgrading, liquefied natural gas re-gasification, power plant, and methan," Energy, Elsevier, vol. 270(C).
    3. Lee, Uisung & Balu, Elango & Chung, J.N., 2013. "An experimental evaluation of an integrated biomass gasification and power generation system for distributed power applications," Applied Energy, Elsevier, vol. 101(C), pages 699-708.
    4. Kyriakarakos, George & Dounis, Anastasios I. & Rozakis, Stelios & Arvanitis, Konstantinos G. & Papadakis, George, 2011. "Polygeneration microgrids: A viable solution in remote areas for supplying power, potable water and hydrogen as transportation fuel," Applied Energy, Elsevier, vol. 88(12), pages 4517-4526.
    5. Mao, Yanpeng & Gao, Yibo & Dong, Wei & Wu, Han & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong, 2020. "Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide – A review," Applied Energy, Elsevier, vol. 267(C).
    6. He, Chang & Feng, Xiao & Chu, Khim Hoong, 2013. "Process modeling and thermodynamic analysis of Lurgi fixed-bed coal gasifier in an SNG plant," Applied Energy, Elsevier, vol. 111(C), pages 742-757.
    7. Gong, Changming & Li, Dong & Liu, Jiajun & Liu, Fenghua, 2024. "Computational study of excess air ratio impacts on performances of a spark-ignition H2/methanol dual-injection engine," Energy, Elsevier, vol. 289(C).
    8. Narvaez, A. & Chadwick, D. & Kershenbaum, L., 2014. "Small-medium scale polygeneration systems: Methanol and power production," Applied Energy, Elsevier, vol. 113(C), pages 1109-1117.
    9. Allman, Andrew & Daoutidis, Prodromos, 2017. "Optimal design of synergistic distributed renewable fuel and power systems," Renewable Energy, Elsevier, vol. 100(C), pages 78-89.
    10. Kieffer, Matthew & Brown, Tristan & Brown, Robert C., 2016. "Flex fuel polygeneration: Integrating renewable natural gas into Fischer–Tropsch synthesis," Applied Energy, Elsevier, vol. 170(C), pages 208-218.
    11. Song, Han & Starfelt, Fredrik & Daianova, Lilia & Yan, Jinyue, 2012. "Influence of drying process on the biomass-based polygeneration system of bioethanol, power and heat," Applied Energy, Elsevier, vol. 90(1), pages 32-37.
    12. Sharifzadeh, Mahdi & Wang, Lei & Shah, Nilay, 2015. "Integrated biorefineries: CO2 utilization for maximum biomass conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 151-161.
    13. Gong, Changming & Li, Zhaohui & Li, Dong & Liu, Jiajun & Si, Xiankai & Yu, Jiawei & Huang, Wei & Liu, Fenghua & Han, Yongqiang, 2018. "Numerical investigation of hydrogen addition effects on methanol-air mixtures combustion in premixed laminar flames under lean burn conditions," Renewable Energy, Elsevier, vol. 127(C), pages 56-63.
    14. Zhang, Jianyun & Ma, Linwei & Li, Zheng & Ni, Weidou, 2014. "The impact of system configuration on material utilization in the coal-based polygeneration of methanol and electricity," Energy, Elsevier, vol. 75(C), pages 136-145.
    15. Guo, Zhihang & Wang, Qinhui & Fang, Mengxiang & Luo, Zhongyang & Cen, Kefa, 2014. "Thermodynamic and economic analysis of polygeneration system integrating atmospheric pressure coal pyrolysis technology with circulating fluidized bed power plant," Applied Energy, Elsevier, vol. 113(C), pages 1301-1314.
    16. Ganesan, T. & Elamvazuthi, I. & Ku Shaari, Ku Zilati & Vasant, P., 2013. "Swarm intelligence and gravitational search algorithm for multi-objective optimization of synthesis gas production," Applied Energy, Elsevier, vol. 103(C), pages 368-374.
    17. Xiao, Peng & Lee, Chia-fon & Wu, Han & Liu, Fushui, 2020. "Effects of hydrogen addition on the laminar methanol-air flame under different initial temperatures," Renewable Energy, Elsevier, vol. 154(C), pages 209-222.
    18. Zhen, Xudong & Wang, Yang, 2015. "Numerical analysis on original emissions for a spark ignition methanol engine based on detailed chemical kinetics," Renewable Energy, Elsevier, vol. 81(C), pages 43-51.
    19. Gong, Changming & Li, Zhaohui & Sun, Jingzhen & Liu, Fenghua, 2020. "Evaluation on combustion and lean-burn limitof a medium compression ratio hydrogen/methanol dual-injection spark-ignition engine under methanol late-injection," Applied Energy, Elsevier, vol. 277(C).
    20. Svanberg, Martin & Ellis, Joanne & Lundgren, Joakim & Landälv, Ingvar, 2018. "Renewable methanol as a fuel for the shipping industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1217-1228.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:112:y:2013:i:c:p:431-439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.