IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v274y2023ics0360544223007697.html
   My bibliography  Save this article

Proposal and investigation of CO2 capture from fired heater flue gases to increase methanol production: A case study

Author

Listed:
  • Shamsi, Mohammad
  • Naeiji, Esfandiyar
  • Rooeentan, Saeed
  • Shahandashty, Behnam Fayyaz
  • Namegoshayfard, Parham
  • Bonyadi, Mohammad

Abstract

In a petrochemical complex in Iran, for production of 209575 kg of MeOH/h, 154,712 kg/h of flue gas with a CO2 concentration of 10.74 mol% enter the atmosphere through a fired heater. The target of this study is to investigate the effect of using post-combustion CO2 capture technology to reduce carbon dioxide emissions and use it to increase methanol production. In order to, the proposed process was simulated and effect of three different solvents, including piperazine (PZ) 30 wt%, monoethanolamine (MEA) 30 wt%, and a blend of MEA 20 wt %+ PZ 10 wt % were investigated. This study investigated solvent regeneration energy, CO2 absorption rate, energy efficiency, and exergy efficiency of stripper column. Simulation results showed PZ with 93% energy efficiency, 55.45% exergy efficiency of stripper column, CO2 emission intensity equal to 0.01 tCO2/tMeOH and lowest solvent regeneration energy equal to 2.6 GJreb/tCO2 has better performance than the other two solvents. Also, the simulation results showed that blending CO2 output from PZ solvent with syngas increases methanol production by 7.8%. The techno-economic analysis also indicated proposed process is more profitable than original process.

Suggested Citation

  • Shamsi, Mohammad & Naeiji, Esfandiyar & Rooeentan, Saeed & Shahandashty, Behnam Fayyaz & Namegoshayfard, Parham & Bonyadi, Mohammad, 2023. "Proposal and investigation of CO2 capture from fired heater flue gases to increase methanol production: A case study," Energy, Elsevier, vol. 274(C).
  • Handle: RePEc:eee:energy:v:274:y:2023:i:c:s0360544223007697
    DOI: 10.1016/j.energy.2023.127375
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223007697
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127375?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ferrara, G. & Lanzini, A. & Leone, P. & Ho, M.T. & Wiley, D.E., 2017. "Exergetic and exergoeconomic analysis of post-combustion CO2 capture using MEA-solvent chemical absorption," Energy, Elsevier, vol. 130(C), pages 113-128.
    2. Feyzi, Vafa & Beheshti, Masoud & Gharibi Kharaji, Abolfazl, 2017. "Exergy analysis: A CO2 removal plant using a-MDEA as the solvent," Energy, Elsevier, vol. 118(C), pages 77-84.
    3. Oh, Se-Young & Binns, Michael & Cho, Habin & Kim, Jin-Kuk, 2016. "Energy minimization of MEA-based CO2 capture process," Applied Energy, Elsevier, vol. 169(C), pages 353-362.
    4. Li, Kangkang & Leigh, Wardhaugh & Feron, Paul & Yu, Hai & Tade, Moses, 2016. "Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: Techno-economic assessment of the MEA process and its improvements," Applied Energy, Elsevier, vol. 165(C), pages 648-659.
    5. Wu, Xiao & Wang, Meihong & Liao, Peizhi & Shen, Jiong & Li, Yiguo, 2020. "Solvent-based post-combustion CO2 capture for power plants: A critical review and perspective on dynamic modelling, system identification, process control and flexible operation," Applied Energy, Elsevier, vol. 257(C).
    6. Zhao, Bin & Liu, Fangzheng & Cui, Zheng & Liu, Changjun & Yue, Hairong & Tang, Siyang & Liu, Yingying & Lu, Houfang & Liang, Bin, 2017. "Enhancing the energetic efficiency of MDEA/PZ-based CO2 capture technology for a 650MW power plant: Process improvement," Applied Energy, Elsevier, vol. 185(P1), pages 362-375.
    7. Otitoju, Olajide & Oko, Eni & Wang, Meihong, 2021. "Technical and economic performance assessment of post-combustion carbon capture using piperazine for large scale natural gas combined cycle power plants through process simulation," Applied Energy, Elsevier, vol. 292(C).
    8. Oh, Hyun-Taek & Ju, Youngsan & Chung, Kyounghee & Lee, Chang-Ha, 2020. "Techno-economic analysis of advanced stripper configurations for post-combustion CO2 capture amine processes," Energy, Elsevier, vol. 206(C).
    9. Kim, Dongin & Han, Jeehoon, 2020. "Techno-economic and climate impact analysis of carbon utilization process for methanol production from blast furnace gas over Cu/ZnO/Al2O3 catalyst," Energy, Elsevier, vol. 198(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shamsi, Mohammad & Rooeentan, Saeed & karami, Behtash & Elyasi Gomari, Kamal & Naseri, Masoud & Bonyadi, Mohammad, 2023. "Design and thermodynamic analysis of a novel structure utilizing coke oven gas for LNG and power cogeneration," Energy, Elsevier, vol. 277(C).
    2. Zhang, Zhiwei & Vo, Dat-Nguyen & Nguyen, Tuan B.H. & Sun, Jinsheng & Lee, Chang-Ha, 2024. "Advanced process integration and machine learning-based optimization to enhance techno-economic-environmental performance of CO2 capture and conversion to methanol," Energy, Elsevier, vol. 293(C).
    3. Shamsi, M. & Obaid, A.A. & Vaziri, M. & Mousavian, S. & Hekmatian, A. & Bonyadi, M., 2024. "A comprehensive comparison of the turbo-expander, Joule-Thomson, and combination of mechanical refrigeration and Joule-Thomson processes for natural gas liquids production," Energy, Elsevier, vol. 295(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julio, Alisson Aparecido Vitoriano & Castro-Amoedo, Rafael & Maréchal, François & González, Aldemar Martínez & Escobar Palacio, José Carlos, 2023. "Exergy and economic analysis of the trade-off for design of post-combustion CO2 capture plant by chemical absorption with MEA," Energy, Elsevier, vol. 280(C).
    2. Zeng, Xingyan & Zhu, Lin & Huang, Yue & Lv, Liping & Zhang, Chaoli & Hao, Qiang & Fan, Junming, 2024. "Combined pinch and exergy analysis for post-combustion carbon capture NGCC integrated with absorption heat transformer and flash evaporator," Energy, Elsevier, vol. 288(C).
    3. Zhang, Zhiwei & Hong, Suk-Hoon & Lee, Chang-Ha, 2023. "Role and impact of wash columns on the performance of chemical absorption-based CO2 capture process for blast furnace gas in iron and steel industries," Energy, Elsevier, vol. 271(C).
    4. Guo, Liheng & Ding, Yudong & Liao, Qiang & Zhu, Xun & Wang, Hong, 2022. "A new heat supply strategy for CO2 capture process based on the heat recovery from turbine exhaust steam in a coal-fired power plant," Energy, Elsevier, vol. 239(PA).
    5. Xie, Heping & Wu, Yifan & Liu, Tao & Wang, Fuhuan & Chen, Bin & Liang, Bin, 2020. "Low-energy-consumption electrochemical CO2 capture driven by biomimetic phenazine derivatives redox medium," Applied Energy, Elsevier, vol. 259(C).
    6. Ji, Long & Yu, Hai & Li, Kangkang & Yu, Bing & Grigore, Mihaela & Yang, Qi & Wang, Xiaolong & Chen, Zuliang & Zeng, Ming & Zhao, Shuaifei, 2018. "Integrated absorption-mineralisation for low-energy CO2 capture and sequestration," Applied Energy, Elsevier, vol. 225(C), pages 356-366.
    7. Oh, Hyun-Taek & Ju, Youngsan & Chung, Kyounghee & Lee, Chang-Ha, 2020. "Techno-economic analysis of advanced stripper configurations for post-combustion CO2 capture amine processes," Energy, Elsevier, vol. 206(C).
    8. Arshad, Nahyan & Alhajaj, Ahmed, 2023. "Process synthesis for amine-based CO2 capture from combined cycle gas turbine power plant," Energy, Elsevier, vol. 274(C).
    9. Oh, Se-Young & Kim, Jin-Kuk, 2018. "Operational optimization for part-load performance of amine-based post-combustion CO2 capture processes," Energy, Elsevier, vol. 146(C), pages 57-66.
    10. Putta, Koteswara Rao & Tobiesen, Finn Andrew & Svendsen, Hallvard F. & Knuutila, Hanna K., 2017. "Applicability of enhancement factor models for CO2 absorption into aqueous MEA solutions," Applied Energy, Elsevier, vol. 206(C), pages 765-783.
    11. Joel, Atuman S. & Wang, Meihong & Ramshaw, Colin & Oko, Eni, 2017. "Modelling, simulation and analysis of intensified regenerator for solvent based carbon capture using rotating packed bed technology," Applied Energy, Elsevier, vol. 203(C), pages 11-25.
    12. Cheng, Chin-hung & Li, Kangkang & Yu, Hai & Jiang, Kaiqi & Chen, Jian & Feron, Paul, 2018. "Amine-based post-combustion CO2 capture mediated by metal ions: Advancement of CO2 desorption using copper ions," Applied Energy, Elsevier, vol. 211(C), pages 1030-1038.
    13. Nwaoha, Chikezie & Tontiwachwuthikul, Paitoon, 2019. "Carbon dioxide capture from pulp mill using 2-amino-2-methyl-1-propanol and monoethanolamine blend: Techno-economic assessment of advanced process configuration," Applied Energy, Elsevier, vol. 250(C), pages 1202-1216.
    14. Pereira, Luís M.C. & Llovell, Fèlix & Vega, Lourdes F., 2018. "Thermodynamic characterisation of aqueous alkanolamine and amine solutions for acid gas processing by transferable molecular models," Applied Energy, Elsevier, vol. 222(C), pages 687-703.
    15. Zhang, Zhiwei & Vo, Dat-Nguyen & Nguyen, Tuan B.H. & Sun, Jinsheng & Lee, Chang-Ha, 2024. "Advanced process integration and machine learning-based optimization to enhance techno-economic-environmental performance of CO2 capture and conversion to methanol," Energy, Elsevier, vol. 293(C).
    16. Li, Long & Liu, Weizao & Qin, Zhifeng & Zhang, Guoquan & Yue, Hairong & Liang, Bin & Tang, Shengwei & Luo, Dongmei, 2021. "Research on integrated CO2 absorption-mineralization and regeneration of absorbent process," Energy, Elsevier, vol. 222(C).
    17. Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    18. Zhang, Rui & Zhang, Xiaowen & Yang, Qi & Yu, Hai & Liang, Zhiwu & Luo, Xiao, 2017. "Analysis of the reduction of energy cost by using MEA-MDEA-PZ solvent for post-combustion carbon dioxide capture (PCC)," Applied Energy, Elsevier, vol. 205(C), pages 1002-1011.
    19. Han, Sung-Chul & Sung, Hail & Noh, Hye-Won & Mazari, Shaukat Ali & Moon, Jong-Ho & Kim, Kyung-Min, 2024. "Synergistic effect of blended amines on carbon dioxide absorption: Thermodynamic modeling and analysis of regeneration energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    20. Zhang, Weidong & Jin, Xianhang & Tu, Weiwei & Ma, Qian & Mao, Menglin & Cui, Chunhua, 2017. "Development of MEA-based CO2 phase change absorbent," Applied Energy, Elsevier, vol. 195(C), pages 316-323.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:274:y:2023:i:c:s0360544223007697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.